Cours Master 2006

Sphere Packings and the Geometry of Numbers.

  • chapter 1  pdf  last release (31.01.2006): compilation of the first 3 lectures.
     
    Bibliography for chapter 1 :
    1. A. Borel, Introduction aux groupes arithmétiques, Hermann Paris 1969 (in french); chapitre 1.
    2. J.W.S. Cassels, An Introduction to the Geometry of Numbers, Grundlehren der Mahematischen Wissenschaften 99.
    3. Y. Kitaoka, Arithmetic of quadratic forms, Cambridge University Press, Cambridge, 1993; chapter 2.
    4. J. Martinet, Perfect Lattices in Euclidean Spaces, Springer 2003
      or
      J. Martinet, Les réseaux parfaits des espaces euclidiens, Masson 1996.

  • chapter 2 Lecture 4 (06.02.2006) pdf

    Bibliography for chapter 2 :
    1. W. Ebeling, Lattices and codes, Friedr. Vieweg & Sohn, Braunschweig,2002.
    2. J.E. Humphreys, Reflection groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
    3. J. Martinet,  loc. cit.

  • chapter 3 Lectures 5 and 6 (20.02.2006 & 27.02.2006) pdf

    Bibliography for chapter 3 :
    1. W. Ebeling, Lattices and codes, Friedr. Vieweg & Sohn, Braunschweig,2002.
    2. J. Martinet,  loc. cit.

  • chapter 4 Lectures 7, 8, 9 and 10  pdf  

    Bibliography for chapter 4 :
    1. W. Ebeling, Lattices and codes, Friedr. Vieweg & Sohn, Braunschweig,2002.
    2. R. Gunnings, Lectures on Modular forms, Princeton U.P. 1962.
    3. T. Miyake, Modular forms, Springer 1976.
    4. A. Ogg, Modular forms and Dirichlet Series, Benjamin 1969.
    5. J.-P. Serre, Cours d'arithmétique, Presses Universitaires de France 1970; last chapter.
    6. James Milne's on-line lecture notes on modular forms http://www.jmilne.org/math/CourseNotes/math678.html

    Caution: conventions and notation vary from one author to the other, especially regarding the weight of a modular form.

  • chapter 4 Lecture 11 (03.04.2006) pdf
  • chapter 5 Lecture 12 (10.04.2006) pdf
  • chapter 5 Lecture 13 (24.04.2006) pdf
  •  
    Bibliography for chapter 5 :

    1. J.W.S. Cassels, An Introduction to the Geometry of Numbers, Grundlehren der Mahematischen Wissenschaften 99.
    2. R. Coulangeon, Réseaux k-extrêmes, Proc. London Math. Soc. (3) 73 (1996), no. 3, 555-574.
    3. ___________ , Voronoï theory over algebraic number fields, Monographies de l'Enseignement Mathématique no 37 (2001), 147-162.
    4. M. I. Icaza, Hermite constant and extreme forms for algebraic number fields, J. London Math. Soc. (2) 55 (1997), no. 1, 11--22.
    5. M. Morishita, T. Watanabe, Adèle geometry of numbers. Class field theory---its centenary and prospect (Tokyo, 1998), 509--536, Adv. Stud. Pure Math. 30, Math. Soc. Japan, Tokyo, 2001.
    6. J. Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322. Springer-Verlag, Berlin, 1999.
    7. S. Ohno, T. Watanabe, Estimates of Hermite constants for algebraic number fields.  Comment. Math. Univ. St. Paul.  50  (2001),  no. 1, 53--63.