IMB > Recherche > Séminaires

Séminaire Images Optimisation et Probabilités

Responsable : Luis Fredes et Camille Male

  • Le 25 avril 2024 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de conférénces
    Maud Biquard ISAE-SUPAERO and CNES
    Variational Bayes image restoration with (compressive) autoencoders
    Regularization of inverse problems is of paramount importance in computational imaging. The ability of neural networks to learn efficient image representations has been recently exploited to design powerful data-driven regularizers. While state-of-the-art plug-and-play methods rely on an implicit regularization provided by neural denoisers, alternative Bayesian approaches consider Maximum A Posteriori (MAP) estimation in the latent space of a generative model, thus with an explicit regularization. However, state-of-the-art deep generative models require a huge amount of training data compared to denoisers. Besides, their complexity hampers the optimization involved in latent MAP derivation. In this work, we first propose to use compressive autoencoders instead. These networks, which can be seen as variational autoencoders with a flexible latent prior, are smaller and easier to train than state-of-the-art generative models. As a second contribution, we introduce the Variational Bayes Latent Estimation (VBLE) algorithm, which performs latent estimation within the framework of variational inference. Thanks to a simple yet efficient parameterization of the variational posterior, VBLE allows for fast and easy (approximate) posterior sampling. Experimental results on image datasets BSD and FFHQ demonstrate that VBLE reaches similar performance than state-of-the-art plug-and-play methods, while being able to quantify uncertainties faster than other existing posterior sampling techniques.
  • Le 2 mai 2024 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de conférences
    Jérôme Bolte Université de Toulouse 1
    Nonsmooth differentiation of algorithms and solution maps
    The recent surge in algorithmic differentiation through the massive use of TensorFlow and PyTorch "autodiff" has democratized "computerized differentiation" for a broad spectrum of applications and solvers. Motivated by the challenges of nonsmoothness (such as thresholding, constraints, and ReLU) and the need to adjust parameters in various contexts directly via these solvers, we have devised tools for nonsmooth differentiation compatible with autodiff. We have in particular developed a nonsmooth implicit function calculus, aiming to provide robust guarantees for prevalent differentiation practices. We will discuss applications of these findings through the differentiation of algorithms and equations.
  • Le 16 mai 2024 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de conférénces
    Bruno Galerne Université d'Orleans
    À préciser
    À préciser
  • Le 23 mai 2024 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de conférénce
    Stephane Dartois À préciser
    À préciser
    À préciser

    Les anciens séminaires