logo IMB
Retour

Séminaire de Théorie des Nombres

Special Values without Semi-Simplicity Via K-Theory

Logan Hyslop

( Harvard )

Salle de conférences

30 janvier 2026 à 14:00

Motivated by studying special values of zeta functions attached to finite type Fp\mathbf{F}_p-schemes, we introduce a category of ``arithmetic C(S1,R)C(S^1,R)-modules'' attached to any Dedekind ring R, and compute the 0th K-group of this category. Specializing to the case of R=ZR=\mathbf{Z}_\ell for some prime p\ell \neq p (resp. R=ZpR=\mathbf{Z}_p), we prove that there is a natural functorial lift of the etale cohomology of perfect etale Z\mathbf{Z}_\ell sheaves (resp. syntomic cohomology of perfect prismatic F-gauges) on a point to arithmetic C(S1,Z)C(S^1,\mathbf{Z}_\ell)-modules (resp. arithmetic C(S1,Zp)C(S^1,\mathbf{Z}_p)-modules). This allows us to define a notion of the multiplicative Euler characteristic via a map from the K0K_0-group which makes sense without assuming Tate's semi-simplicity conjecture. In particular, we can remove this hypothesis from a theorem of Milne proving a cohomological formula for zeta values attached to smooth proper Fp\mathbf{F}_p-schemes.