Publications :

  1. On the expected total cost with unbounded returns for Markov decision processes, with F. Dufour. Arxiv.
  2. Probabilistic and Piecewise Deterministic models in Biology, with B. Cloez, R. Dessalles, F. Malrieu, A. Marguet and R. Yvinec. Arxiv. To appear in ESAIM: P&S.
  3. Estimation of the average number of continuous crossings for non-stationary non-diffusion processes, with R. Azaïs. Soumis.
  4. Inference for conditioned Galton-Watson trees from their Harris path, with R. Azaïs and B. Henry. Soumis. A Matlab toolbox associated to this paper is available here.
  5. Averaging for some simple constrained Markov processes. Soumis. To appear in Probability and Mathematical Statistics.
  6. A new characterization of the jump rate for piecewise-deterministic Markov processes with discrete transitions, with R. Azaïs. Communications in Statistics. Arxiv.
  7. Spatio-temporal averaging for a class of hybrid systems. A. Genadot. Nonlinear Analysis: Hybrid Systems, vol. 22 (2016). Permanent link.
  8. Simulations of Stochastic Partial Differential Equations for Excitable Media using Finite Elements. Boulakia M., Genadot A. and Thieullen M. Journal Of Scientific Computing, vol.65 n. 1 (2015). Permanent link.
  9. Semi-parametric inference for the absorption features of a growth-fragmentation model A. Genadot and R. Azaïs. TEST, vol. 24 n. 2. (2015). Permanent link.
  10. Piecewise Deterministic Markov Process (PDMPs). Recent Results. Azaïs R., Bardet J-B., Genadot A.,  Krell N. and Zitt P-A. ESAIM: PROCEEDINGS, vol. 44 (2014). Permanent link.
  11. Multiscale Piecewise Deterministic Markov Process in Infinite Dimension: Central Limit Theorem and Langevin Approximation. Genadot A. and Thieullen M. ESAIM: P&S, vol. 18 (2014). Permanent link.
  12. Averaging for a fully coupled Piecewise Deterministic Markov Process in Infinite Dimensions. Genadot A. and Thieullen M. Advances in Applied Probability, vol. 44 n. 3 (2012). Permanent link.

Note non publiée :

  1. A multi-scale study of a class of hybrid predator-prey models. A. Genadot (2014). Arxiv.