IMB > Informations générales > Agendas

La semaine de l’IMB

La semaine de l’IMB recense l’ensemble des événements de la semaine en cours

  • Le 30 septembre 2021 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Xuan Hieu Ho (IMB)
    Le spectre généralisé de moyenne intégrale de Whole-Plane SLE
    En 1999, Odded Schramm a créé la célèbre évolution de Schramm-- Loewner (SLE) en introduisant la 'Brownian driving function' $\lambda(t)=e^{i\sqrt{\kappa}B_t}$ dans la classique équation de Loewner. Depuis sa découverte, SLE est beaucoup étudiée par les mathématiciens et aussi par les physiciens due à sa relation avec des modèles de la physique statistique. Dans cet exposé, je parlerai de la question de déterminer les valeurs du spectre multifractal associé aux moyennes intégrales de Whole--Plane SLE (une version de SLE). Je présenterai brièvement le Whole--Plane SLE, le spectre de moyenne intégrale et le spectre généralisé de moyenne intégrale. Je parlerai ensuite des résultats obtenus sur les valeurs de ces spectres (en espérance). Une hypothèse sur les valeurs du spectre généralisé sera introduite. La partie principale de cet exposé est une analyse synthétique avec laquelle nous allons réviser les résultats déjà obtenus sur les spectres de moyenne intégrale ainsi que les approches prises dans les travaux antérieurs. Finalement je présenterai comment utiliser cette analyse pour obtenir des nouveaux résultats sur ce sujet.
  • Le 1er octobre 2021 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Jean-François Quint
    Représentations unitaires de groupes libres
    Une représentation unitaire d'un groupe libre (de type fini) constitue simplement en la donnée d'un ensemble fini d'automorphismes unitaires d'un espace de Hilbert. Dans cet exposé, je présenterai une nouvelle construction de telles représentations pour laquelle on peut calculer explicitement certains invariants spectraux.
  • Le 1er octobre 2021 à 11:00
  • Le séminaire des doctorants
    Salle de Conférences
    William Dallaporta (IMT)
    When quadratic forms enable to derive information about ideals
    In 1847, Gabriel Lamé published an incorrect proof for the Theorem of Fermat-Wiles. It has not a lot to do with the heart of this presentation, where quadratic forms will play a leading role. The author invites you first to rediscover the introduction of the ideal class group, difficult to control but having lot of arithmetic information, then to relive the experiments he made thanks to the link (in the quadratic case) between this group and the quadratic forms, regarding a problem of specialization of ideals in integral values.
  • Le 1er octobre 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Florian Luca (University of the Witwatersrand, Johannesburg)
    Universal Skolem Sets
    Coauthors: J. Ouaknine (Max--Planck Saabr\'ucken), J. B. Worrell (Oxford).The celebrated Skolem--Mahler--Lech theorem asserts that if ${\bf u}:=(u_n)_{n\ge 0}$ is a linearly recurrent sequence of integers then the set of its zeros, that is the set of positive integers $n$ such $u_n=0$, form a union of finitely many infinite arithmetic progressions together with a (possibly empty) finite set. Except for some special cases, is not known how to bound effectively all the zeros of ${\bf u}$. This is called {\it the Skolem problem}. In this talk we present the notion of a {\it universal Skolem set}, which an infinite set of positive integers ${\mathcal S}$ such that for every linearly recurrent sequence ${\bf u}$, the solutions $u_n=0$ with $n\in {\mathcal S}$ are effectively computable. We present a couple of examples of universal Skolem sets, one of which has positive lower density as a subset of all the positive integers.

    Afficher tous les événements à venir