IMB > Informations générales > Agendas

La semaine de l’IMB

La semaine de l’IMB recense l’ensemble des événements de la semaine en cours

  • Le 12 octobre 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Damien Robert (IMB)
    Revisiter l'algorithme de Satoh de comptage de points en petite caractéristique par relèvement canonique

    L’algorithme de Satoh de comptage de points sur les courbes elliptiques permet d’obtenir (après des améliorations de Harvey) une complexité quasi-quadratique en le degré pour une (petite) caractéristique fixée $p$. Dans cet exposé je passerai en revue plusieurs variantes de cet algorithme et ses extensions aux variétés abéliennes. J’expliquerai ensuite comment on peut grandement simplifier l’implémentation de cet algorithme. L’implémentation dans Pari/GP du nouvel algorithme produit un gain d’un facteur 30 à la fois de temps de calcul et de consommation mémoire.


  • Le 12 octobre 2021 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Dimitri Cobb (Lyon)
    La question de l'existence et l'unicité de solutions en MHD plane
    Les équations de la magnétohydrodynamique (MHD) décrivent l'évolution d'un fluide conducteur de courant. Il s'agit d'un couplage non-linéaire entre une équation cinétique (Navier-Stokes ou Euler) et une équation électromagnétique. Pendant cet exposé, nous explorerons les questions liées à l'existence et l'unicité de solutions au problème de Cauchy en deux dimensions d'espace. Dans un premier temps, nous chercherons à mettre en évidence les difficultés du problème en abordant des modèles de difficulté croissante. Nous partirons d'un modèle de type ``Navier-Stokes généralisé'' complètement parabolique et enlèverons les termes de dissipation les uns après les autres en expliquant comment cela affecte la résolution du problème de Cauchy. Dans un deuxième temps, nous nous concentrerons sur le modèle complètement hyperbolique de la MHD idéale. Nous verrons en particulier que le temps de vie des solutions peut être pris arbitrairement grand dans le régime des champs magnétiques faibles. Ce résultat a été obtenu en collaboration avec Francesco Fanelli.
  • Le 13 octobre 2021 à 16:30
  • Le séminaire des doctorants
    Salle de Conférences
    Marco Artusa (IMB)
    Condensed Mathematics: exploring a rising theory
    Topological spaces are a key concept in modern mathematics, and they can model different types of objects, but not without problems…Condensed Mathematics is a new theory currently being developed by Dustin Clausen and Peter Scholze with the goal of solving such problems by redefining the concept of topological space. The result unifies different branches of mathematics (analysis, p-adic geometry, complex geometry): in this talk, I will present the foundations and the basic definitions of this rising theory. Finally, I will show how Condensed Mathematics can provide a new approach to the classical problem of computing the K-theory of C. In the same way, it is likely that the new objects coming from the condensed world will make it possible to attack mathematical conjectures in a new way.
  • Le 14 octobre 2021 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Karim Kellay (IMB)
    Suréchantillonnage dans les espaces de Paley-Wiener et applications : Théorème de Bernstein et Théorème de Donoho-Logan
    TBA
  • Le 14 octobre 2021 à 14:00
  • Séminaire Calcul Scientifique et Modélisation
    Salle 2
    Andrea Thomann (University of Mainz)
    [Séminaire CSM] Low Mach schemes based on Jin-Xin relaxation
    Low Mach problems arise in fluid dynamics when the local speed of the material is much smaller than the one of acoustic or shear waves.In these regimes, a full resolution of all the waves present in the model requires very small time steps, while usually one is mainly interested in the dynamics of the slow wave.Here, we use a Jin-Xin relaxation approach to develop a general framework for the construction of low Mach schemes for hyperbolic problems.Due to the relaxation procedure, the flux of the resulting model is linear which allows the use of implicit solvers without a restriction on the time step. The time-semi discrete scheme is written in elliptic form which reduces the number of variables to be updated.The relaxation source term is treated by projection on relaxation equilibrium resulting into a generic scheme independent of the relaxation rate.The scheme is applied on the Euler equations and the equations of non-linear elasticity.
  • Le 14 octobre 2021 à 15:30
  • Le Colloquium
    Salle de Conférences
    Olivier Benoist (ENS)
    Positivité et sommes de carrés.
    Le 17ème problème de Hilbert, résolu en 1927 par Artin, affirme que tout polynôme réel qui ne prend que des valeurs positives est une somme de carrés de fractions rationnelles. Je présenterai l'histoire de cette question, des développements récents, et des problèmes ouverts.
  • Le 15 octobre 2021 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Martin Mion-Mouton (Strasbourg)
    Difféomorphismes partiellement hyperboliques de contact
    Depuis les travaux de Ghys puis de Benoist-Foulon-Labourie dans les années 90, on sait classifier les flots Anosov de contact dont les distributions invariantes sont lisses (ils sont tous d'origine algébrique). Dans cet exposé nous nous intéresserons à la situation analogue dans le cas des temps discrets, c'est à dire aux difféomorphismes partiellement hyperboliques de type contact dont les distributions invariantes sont lisses. Nous verrons que l'étude d'une structure géométrique rigide préservée par ces derniers, appelée structure Lagrangienne de contact, permet de les classifier en l'absence de point errant.
  • Le 15 octobre 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Roberto Pirisi (Rome Sapienza)
    Brauer groups of moduli stacks via cohomological invariants
    Given an algebraic variety X, the Brauer group of X is the group of Azumaya algebras over X, or equivalently the group of Severi-Brauer varieties over X, i.e. fibrations over X which are étale locally isomorphic to a projective space. It was first studied in the case where X is the spectrum of a field by Noether and Brauer, and has since became a central object in algebraic and arithmetic geometry, being for example one of the first obstructions to rationality used to produce counterexamples to Noether's problem of whether given a representation V of a finite group G the quotient V/G is rational. While the Brauer group has been widely studied for schemes, computations at the level of moduli stacks are relatively recent, the most prominent of them being the computations by Antieau and Meier of the Brauer group of the moduli stack of elliptic curves over a variety of bases, including Z, Q, and finite fields.In a recent series of joint works with A. Di Lorenzo, we use the theory of cohomological invariants, and its extension to algebraic stacks, to completely describe the Brauer group of the moduli stacks of hyperelliptic curves, and their compactifications, over fields of characteristic zero, and the prime-to-char(k) part in positive characteristic. It turns out that the Brauer group of the non-compact stack is generated by elements coming from the base field, cyclic algebras, an element coming from a map to the classifying stack of étale algebras of degree 2g+2, and when g is odd by the Brauer-Severi fibration induced by taking the quotient of the universal curve by the hyperelliptic involution. This paints a richer picture than in the case of elliptic curves, where all non-trivial elements come from cyclic algebras. Regarding the compactifications, there are two natural ones, the first obtained by taking stable hyperelliptic curves and the second by taking admissible covers. It turns out that the Brauer group of the former is trivial, while for the latter it is almost as large as in the non-compact case, a somewhat surprising difference as the two stacks are projective, smooth and birational, which would force their Brauer groups to be equal if they were schemes.

    Afficher tous les événements à venir