Responsables : Wasilij Barsukow et Alessia Del Grosso
Networks of hyperbolic PDEs arise in different applications, e.g. modeling water- or gas-networks or road traffic. In the first part of this talk we discuss modeling aspects of coupling conditions for hyperbolic PDEs.
Starting from an kinetic description we derive coupling conditions for the associated macroscopic equations. For this process a detailed description of the boundary layer is important. In the second part appropriate numerical methods are considered.
Different high order approaches are compared and applications to district heating or water networks are discussed.
We study non-conservative hyperbolic systems of balance laws and are interested in development of well-balanced (WB) numerical methods for such systems. One of the ways to enforce the balance between the flux terms and source and non-conservative product terms is to rewrite the studied system in a quasi-conservative form by incorporating the latter terms into the modified global flux. The resulting system can be quite easily solved by Riemann-problem-solver-free central-upwind (CU) schemes. This approach, however, does not allow to accurately treat non-conservative products. We therefore apply a path-conservative (PC) integration technique and develop a very robust and accurate path-conservative central-upwind schemes (PCCU) based on flux globalization. I will demonstrate the performance of the WB PCCU schemes on a wide variety of examples.