IMB > Recherche > Séminaires

Séminaire Théorie des Nombres

Responsables : Elena Berardini, Léo Poyeton.

  • Le 19 avril 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Xenia Dimitrakopoulou (University of Warwick)
    Anticyclotomic $p$-adic $L$-functions for families of $U_n \times U_{n+1}$
    I will report on recent work on the construction of anticyclotomic $p$-adic $L$-functions for Rankin-Selberg products. I will explain how by $p$-adically interpolating the branching law for the spherical pair $\left(U_n, U_n \times U_{n+1}\right)$, we can construct a $p$-adic $L$-function attached to cohomological automorphic representations of $U_n \times U_{n+1}$. Due to the recent proof of the unitary Gan-Gross-Prasad conjecture, this $p$-adic $L$-function interpolates the square root of all critical $L$-values, including anticyclotomic variation. Time allowing, I will explain how we can extend this result to the Coleman family of an automorphic representation.
  • Le 3 mai 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Aurore Boitrel (Paris-Saclay)
    TBA
    ...
  • Le 17 mai 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Dino Lorenzini (UGA)
    TBA
    ...
  • Le 24 mai 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Maria Montanucci (Technical University Copenaghen)
    TBA
    ...
  • Le 31 mai 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Marsault Chabat Université Franche Comté
    TBA
    TBA
  • Le 7 juin 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Stefano Morra LAGA (Paris 13)
    Un modèle local pour les représentations potentiellement Barsotti–Tate
    Les anneaux de déformation potentiellement Barsotti–Tate sont un outil essentiel pour l’obtention de résultats profonds en arithmétique, comme la conjecture de Shimura–Taniyama–Weil ou la conjecture de Breuil–Mézard. Néanmoins leur géométrie n’est pas encore bien comprise, et présente de comportement variés avec la parution de points irréguliers ou non-normaux (comme montré par des exemples et conjectures de Caruso–David–Mézard). Dans cet exposé nous discuterons comment les champs de modules de Breuil–Kisin peuvent être utilisés pour décrire la géométrie des champs des représentations potentiellement et modérément Barsotti–Tate (en rang 2, pour des extension non ramifiées de $\mathbf{Q}_p$), en utilisant la théorie des modèles locaux des groupes des lacets en caractéristique mixte. L’outil technique principal est une analyse de la p-torsion d’un complexe tangent pour relever des cartes affines pour des images schématiques entre champs de Breuil–Kisin et des représentations Galoisiennes. Avec ce procédé, nous obtenons un algorithme pour calculer des présentations explicites des anneaux de déformation potentiellement modérément Barsotti–Tate pour les représentations Galoisiennes de dimension 2 pour des extensions non-ramifiées de $\mathbf{Q}_p$. Ceci est un travail en commun avec B. Le Hung et A. Mézard.
  • Le 14 juin 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Salim Rostam Université de Tours
    TBA
    TBA

    Les séminaires depuis 2013