> >
Séminaire Théorie des Nombres
Responsables : Elena Berardini, Léo Poyeton.
Le 6 janvier 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Thibault Poiret -
Jacobiennes compactifiées, courbes logarithmiques et modèles de Néron
À toute courbe lisse, on peut naturellement associer une variété abélienne, sa Jacobienne.L'espace de modules des courbes lisses de genre fixé peut être compactifié en un espace de modules de courbes nodales. Cela soulève la question d'étendre la définition de Jacobienne aux courbes nodales, en préservant au mieux ses propriétés et sa modularité. Nous discuterons des difficultés que cela présente, et d'outils permettant de les affronter.
Le 13 janvier 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Wouter Castryck Louvain
Scrollar invariants, syzygies and representations of the symmetric group
Le 20 janvier 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Adrien Morin IMB
Valeurs spéciales de fonctions L pour les faisceaux Z-constructibles en dimension 1
La cohomologie Weil-étale est une théorie cohomologique (en partie conjecturale) pour les schémas arithmétiques, qui se comporte mieux que la cohomologie étale et a des liens conjecturaux aux valeurs spéciales de fonctions zêta. Dans cet exposé, j'expliquerai comment on peut définir en dimension 1 la cohomologie Weil-étale à support compact à coefficients un faisceau Z-constructible, et j'établirai un lien avec la valeur spéciale en s=0 d'une fonction L naturellement associée aux coefficients considérés. Il y a 3 cas particuliers intéressants : on obtient une formule cohomologique pour la valeur spéciale en s=0 de la fonction zêta du spectre d'un ordre dans un corps de nombres, ce qui généralise la formule analytique du nombre de classes; on obtient aussi une formule pour la valeur spéciale en s=0 des fonctions L d'Artin associées à une représentation rationnelle du groupe de Galois d'un corps global; et enfin la formule pour un faisceau constructible permet de retrouver la formule de Tate pour la caractéristique d'Euler d'un corps de nombres.
Le 26 janvier 2023
à 15:00
Séminaire de Théorie des Nombres
Salle 2
François Hennecart Saint-Etienne
Le théorème de Kneser dans les groupes abéliens $\sigma$-finis.
Résoudre un problème inverse en théorie additive des nombres consiste à fournir une description fine de la structure d'ensembles satisfaisant une condition contraignante portant sur la taille de leur somme. Cette description sera d'autant plus fine que la contrainte est proche de l'optimal. Par exemple la somme $A+B$ de deux ensembles finis non vides de nombres réels a pour taille (ici le cardinal) minimale la sommes des cardinaux moins un : $|A+B|\geq |A|+|B|-1$.Le problème inverse associé consiste à décrire les paires $(A,B)$ telle que l'égalité a lieu. L'environnement générique est celui d'un groupe $G$ (ou d'un semi-groupe) abélien fini ou non. Il faut y définir la notion de taille d'une partie et comparer les tailles de $A$, $B$ et $A+B$ afin de poser un problème inverse susceptible d'être résolu. Si $\tau(A)$ désigne la taille d'une partie $A$ de $G$, on dit que $(A,B)$ est une paire critique si $\tau(A+B)<\tau(A)+\tau(B)$. Le théorème de Kneser (1953) dans les groupes abéliens affirme que si $(A,B)$ est une paire critique (pour le cardinal), alors il existe un sous-groupe $H$ tel que $A+B=A+B+H$ et $|A+B|=|A+H|+|B+H|-|H|$.L'autre fameux théorème de Kneser porte sur les paires critiques de suites d'entiers que l'on mesure à travers leur densité asymptotique inférieure. Kneser (1956) a ensuite établi un énoncé qui porte sur les sous-ensembles de groupes abéliens localement compacts munis de leur mesure de Haar. Beaucoup plus récemment Jin (2006, 2007, 2010) et Griesmer (2013) ont démontré des résultats en termes de densité, notamment dans les groupes abéliens dénombrables.Le long de cet exposé, je donnerai des éléments historiques plus ou moins récents sur ces questions et traiterai un cas du théorème de Kneser qui se situe à l'interface des résultats initiaux de Kneser et ceux de Griesmer, à savoir celui des groupes abéliens $\sigma$-finis. Ce travail a été conduit en collaboration avec P-Y. Bienvenu (Dublin).
Le 3 février 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Paul Péringuey Nancy
Une généralisation de la conjecture d'Artin parmi les presque premiers
La conjecture d'Artin stipule que l'ensemble des nombres premiers pour lesquels un entier a différent de -1 ou un carré parfait est racine primitive admet une densité asymptotique parmi tous les premiers. En 1967 C.Hooley démontra cette conjecture sous l'hypothèse de Riemann généralisée. La notion de racine primitive peut être étendue modulo un entier quelconque en considérant alors les éléments du groupe multiplicatif engendrant des sous-groupes de tailles maximales. Je parlerai de l'ensemble des presque premiers pour lesquels un nombre a est racine primitive généralisée, et montrerai que l'on obtient, sous GRH, des résultats similaires à la conjecture d'Artin pour les racines primitives.
Le 10 février 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Kevin Destagnol Paris-Saclay
Moyennes de fonctions arithmétiques évaluées en des polynômes et applications
On expliquera comment estimer la moyenne d'une fonction arithmétique évaluée en des polynômes pourvu que la fonction arithmétique se comporte bien dans les progressions arithmétiques et que le nombre de variables des polynômes soit suffisamment grand. On donnera alors quelques applications au problème de Loughran--Smeets qui étudie la probabilité avec laquelle une équation diophantienne choisie au hasard au sein d'une famille possède une solution rationnelle. Il s'agit d'un travail en commun avec Efthymios Sofos et Leonard Hochfilzer.
Le 24 février 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Daniel Kriz Sorbonne Université
Les conjectures principales supersingulières, la conjecture de Sylvester et la conjecture de Goldfeld
Je présenterai un théorème « p-converse » à rang 0 et 1 pour les courbes elliptiques sur les rationnels à multiplication complexe (CM) dans le cas où le nombre premier p est ramifié dans le corps CM. Ce théorème a des applications à deux problèmes classiques d'arithmétique: il vérifie la conjecture de Sylvester de 1879 sur les nombres premiers exprimables comme une somme de deux cubes rationnels et établit la conjecture de Goldfeld pour la famille des nombres congruents. La démonstration répose sur la formulation et la preuve d'une nouvelle conjecture principale d'Iwasawa, qui à leur tour utilisent de nouvelles méthodes issues des interactions entre les objets théoriques d'Iwasawa et la théorie de Hodge p-adique relative sur les courbes de Shimura à niveau infini.
Le 3 mars 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Andrés Jaramillo Puentes Essen
Intersections Tropicales Enrichies Quadratiquement
La géométrie tropicale est un outil calculatoire puissant en géométrie énumérative réelle et complexe. Les résultats récents de la théorie homotopique motivique nous permettent d'étudier des questions de géométrie énumérative sur un corps arbitraire k. Dans cet exposé, on présente un des premiers exemples d'utilisation de la géométrie tropicale afin de résoudre des questions de la géométrie énumérative sur k : un théorème de Bézout enrichi quadratiquement. On expliquera les notions nécessaires de la géométrie énumérative valuée dans l'anneau de Grothendieck-Witt des formes quadratiques sur k. On définira une multiplicité d'intersection motivique valuée sur cet anneau et on prouve comment la calculer de façon combinatoire.Finalement, on utilisera ces idées pour prouver le théorème de Bézout enrichi quadratiquement. Si le temps le permet, on expliquera comment généraliser cette preuve pour montrer un analogue du théorème de Bernstein-Kushnirenko et sa correspondance avec l'intersectiondes hypersurfaces dans les variétés toriques.
Le 10 mars 2023
à 13:30
Séminaire de Théorie des Nombres
Salle de Conférences
Rencontre ANR FRACASSO : Marta Pieropan (Utrecht) null
On rationally connected varieties over $C_1$ fields of characteristic 0
In the 1950s Lang studied the properties of $C_1$ fields, that is, fields over which every hypersurface of degree at most n in a projective space of dimension n has a rational point. Later he conjectured that every smooth proper rationally connected variety over a $C_1$ field has a rational point. The conjecture is proven for finite fields (Esnault) and function fields of curves over algebraically closed fields (GraberHarrisde JongStarr), but it is still open for the maximal unramified extensions of $p$-adic fields. I use birational geometry in characteristic 0 to reduce the conjecture to the problem of finding rational points on Fano varieties with terminal singularities, and I provide some evidence in dimension 3.
Le 17 mars 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Veronika Ertl Ratisbonne
Un approche rigide à la cohomologie de Hyodo--Kato
La cohomologie de Hyodo-Kato joue un rôle important dans la géométrie arithmétique, en particulier dans la théorie de Hodge p-adique. Elle permet de munir la cohomologie de de Rham d'un schéma (propre de réduction sémistable) sur un anneau de valuation discrète complet avec un structure de (Æ,N)-module. Je vais présenter une approche à la théorie de Hyodo-Kato fondée sur des méthodes rigides analytique, qui permet d'étudier des schémas plus généraux (en particulier non-nécessairement propre). Dans un cas particulier, je vais expliquer comment cette construction permet de comprendre la relation entre la cohomologie rigide de Berthelot et la cohomologie de Hyodo-Kato. (Travail en cours en commun avec Kazuki Yamada, Keio University.)
Le 24 mars 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Dino Lorenzini Georgia
Torsion and Tamagawa numbers
Associated with an abelian variety A/K over a number field K is a finite set of integers greater than 1 called the local Tamagawa numbers of A/K. Assuming that the abelian variety A/K has a K-rational torsion point of prime order N, we can ask whether it is possible for none of the local Tamagawa numbers to be divisible by N. The ratio (product of the Tamagawa numbers)/|Torsion in E(K)| appears in the conjectural leading term of the L-function of A in the Birch and Swinnerton-Dyer conjecture, and we are thus interested in understanding whether there are oftencancellation in this ratio.We will present some finiteness results on this question in the case of elliptic curves. More precisely, let d>0 be an integer, and assume that there exist infinitely fields K/Q of degree d with an elliptic curve E/K having a K-rational point of order N. We will show that for certain such pairs (d,N), there are only finitely many fields K/Q of degree d such that there exists an elliptic curve E/K having a K-rational point of order Nand none of the local Tamagawa numbers are divisible by N. The lists of known exceptions are surprisingly small when d is at most 7."
Le 31 mars 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Quentin Gazda École Polytechnique
Cohomologie motivique en arithmétique des corps de fonctions
Des valeurs zêta intéressantes apparaissent en arithmétique des corps de fonctions comme valeur spéciales de fonctions L de A-motifs d'Anderson. Je réfléchis actuellement à l'analogue d'une conjecture de Beilinson dans ce cadre, liant ces valeurs spéciales au déterminant d'un régulateur. Dans cet exposé, je présenterai mes premiers pas dans ce programme : après un rappel général sur les A-motifs et leur théorie, j'expliquerai comment définir une « cohomologie A-motivique ». On définira ensuite un régulateur, et je conclurai sur quelques calculs récents obtenus avec Andreas Maurischat dans le cas des twists de Carlitz.
Le 7 avril 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Adel Betina Copenhague
La conjecture des zéros exceptionnels pour les fonctions L p-adiques de Katz.
Dans un travail commun avec M.L. Hsieh, on démontre une variante de la conjecture de Gross-Stark pour les fonctions L p-adiques de Katz associées à des corps CM, i.e. on donne une formule pour la dérivée en s = 0 le long de la direction cyclotomique. Notre méthode est basée sur l'étude des congruences entre des familles P-adiques de type CM et non-CM via la méthode de Rankin-Selberg p-adique. On construit une famille de Hida non-CM qui est congruente à une famille de Hida CM pour la spécialisation 1+µ en dehors des coefficients en p, et telle que les coefficients en p sont explicitement liées à la dérivée en s = 0 de la fonction L p-adique anticyclotomique de Katz. On détermine les coefficients en p infinitésimalement via une variante très générale du lemme de Ribet en déformations Galoisiennes qu'on démontre (la représentation résiduelle est scalaire localement en p !)
Le 14 avril 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Ratko Darda Bâle
Une nouvelle classe de hauteurs sur les champs et conjecture de Manin
La conjecture de Manin prédit le comportement asymptotique du nombre de points rationnels de hauteur bornée sur les variétés de Fano. Plus précisément, pour une variété de Fano lisse, nous attendons que, en dehors d'un ensemble mince, le nombre de points rationnels de hauteur moins que $B$ soit asymptotique à $C B^{a}\log(B)^b$ pour certains $C, a, b>0$. Cette prédiction est (formellement) très similaire à la prédiction de Malle sur le nombre d'extensions galoisiennes ayant le groupe de Galois fixe et le discriminant borné. Les deux conjectures sont concernées par des points rationnels sur les champs de Deligne-Mumford. Nous présentons une nouvelle classe de hauteurs sur ces champs. Nous les utilisons pour donner une version de la conjecture de Manin pour les champs (de Deligne-Mumford), plus forte que celle d'Ellenberg, Satriano et Zureick-Brown, ayant les conjectures de Manin et de Malle comme conséquences. C'est un travail en commun avec T. Yasuda.
Le 28 avril 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Francesco Lemma IMJ Paris
Cycles algébriques et fonctorialité de Langlands de $G_2$ à $PGSp(6)$.
On considérera la composante de la cohomologie d'une variété de Siegel de dimension 6 correspondant à une représentation automorphe cuspidale de $PGSp(6)$ qui provient du groupe exceptionnel $G_2$. Gross et Savin ont conjecturé que la droite Galois invariante qu'on y trouve est engendrée par la classe de cohomologie d'une sous-variété de Hilbert. On présentera un travail en commun avec Cauchi et Rodrigues Jacinto permettant de ramener la démonstration de la conjecture à la non-nullité d'une intégrale archimédienne (arXiv:2202.09394).
Le 5 mai 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Séverin Philip Kyoto
Groupes de monodromie finie et variétés abéliennes CM
Après un peu de contexte sur les variétés abéliennes et la semi-stabilité j'introduirai les groupes de monodromie finie ainsi que leur lien avec la réduction semi-stable. Je présenterai sans détails un résultat de type local-global relatif pour ces groupes. On verra ensuite comment utiliser la théorie CM pour produire des gros groupes de monodromie, ce qui passera par la résolution de problèmes de Grunwald pour certains produits en couronne. Avec le principe local-global précédent cette construction permet de borner le degré de semi-stabilité en fonction de la dimension.
Le 26 mai 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Luca Tasin Milan
Sasaki-Einstein metrics on spheres
It is a classical problem in geometry to construct interesting metrics on spheres. Sasaki-Einstein metrics are the analogous of Kähler-Einstein metrics for odd dimensional real manifolds. I will report on a joint work with Yuchen Liu and Taro Sano in which we construct infinitely many Sasaki-Einstein metrics on odd-dimensional spheres that bound parallelizable manifolds, proving in this way conjectures of Boyer-Galicki-Kollár and Collins-Székelyhidi. The construction is based on showing the K-stability of certain Fano weighted orbifold hypersurfaces.
Le 2 juin 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Eknath Ghate TIFR Bombay et IHES
Zig-zag holds for Galois representations
I will give a survey of recent work on the description of the explicit shape of the reductions of two-dimensional local Galois representations, concentrating on our recent proof of the zig-zag conjecture.
Le 9 juin 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de Conférences
Olivier Wittenberg Université Sorbonne Paris Nord
Descente hyper-résoluble pour les points rationnels
Le formalisme aujourd'hui classique de la descente sous des tores introduit
par Colliot-Thélène et Sansuc dans les années 1980 admet un analogue dans
lequel les tores sont remplacés par des groupes finis hyper-résolubles.
J'expliquerai ce formalisme et en discuterai des applications, notamment
aux points rationnels des espaces homogènes de groupes linéaires et au
problème inverse de Galois avec normes prescrites (généralisation des
travaux de Frei-Loughran-Newton). Il s'agit d'un travail en commun avec
Yonatan Harpaz.
Le 22 septembre 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de conférences
Abhinandan (University of Tokyo)
Prismatic F-crystals and Wach modules
For an unramified extension $K/\mathbb{Q}_p$ with perfect residue field, by works of Fontaine, Colmez, Wach and Berger, it is well-known that the category of Wach modules over a certain integral period ring $\mathbf{A}_K^+$ is equivalent to the category of lattices inside crystalline representations of $G_K$, i.e. the absolute Galois group of $K$. Moreover, by recent work of Bhatt and Scholze, we also know that lattices inside crystalline representations of $G_K$ are equivalent to the category of prismatic $F$-crystals over $O_K$, i.e. the ring of integers of $K$. The goal of this talk is to present a direct construction of the categorical equivalence between Wach modules over $\mathbf{A}_K^+$ and prismatic $F$-crystals over $O_K$. If time permits, we will also mention generalisation of our construction to the relative case as well as relationships between relative Wach modules, $q$-connections and filtered $(\varphi, \partial)$-modules.
Le 29 septembre 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de conférences
Sophie Marques (Stellenbosch University)
La géométrie des espaces de modules : classification des extensions de corps à isomorphisme près
Dans cet exposé, on se focalise sur la classification des extensions de corps à isomorphisme près, une tâche qui nécessite la création d'un système de classification solide. L'objectif est de mieux comprendre la structure des extensions de corps en étudiant les familles de polynômes associées. L'analyse s'approfondit en examinant les cas
spécifiques des extensions cubiques, quartiques et radicales, y compris celles qui ne sont pas nécessairement galoisiennes, en introduisant des concepts tel que la fermeture radicale et l'Artin-Schreier. Pour faire cela, une attention particulière est portée aux extensions cyclotomiques.
(joint with Jacob Ward, Mpendulo Cele, Elizabeth Merma, Chad Brache)
Le 6 octobre 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de conférences
Luis Santiago Palacios (IMB - Université de Bordeaux)
Geometry of the Bianchi eigenvariety at non-cuspidal points
An important tool to study automorphic representations in the framework of the Langlands program is to produce $p$-adic variation. Such variation is captured geometrically in the study of certain rigid analytic spaces, called eigenvarieties.
In this talk, we first introduce Bianchi modular forms, that is, automorphic forms for $\mathrm{GL}_2$ over an imaginary quadratic field, and then discuss its contribution to the cohomology of the Bianchi threefold. Further, we present the Bianchi eigenvariety and state our result about its geometry at a special non-cuspidal point. Time permitting, we will give some ideas about the proof. This is a joint work in progress with Daniel Barrera (Universidad de Santiago de Chile).
Le 13 octobre 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de conférences
Riccardo Pengo (Leibniz Universität Hannover)
Théorie d'Iwasawa pour les graphes et mesures de Mahler p-adiques
La théorie d'Iwasawa étudie l'évolution de certains invariants, comme le nombres des classes d'idéaux d'un corps de nombres, dans une tour d'objets, donnée par exemple par la tour des corps cyclotomiques. En regardant les analogies entre corps de nombres, corps de fonctions des courbes sur les corps finis, nœuds et graphes, la théorie d'Iwasawa a été étendue à ces types d'objets. Pour le cas des graphes, plusieurs auteurs ont montré que les valuations p-adiques des nombres d'arbres couvrants dans une tour l-adique des graphs, qui est l'invariant analogue au nombre des classes d'idéaux, satisfait des analogues des théorèmes classiques de Iwasawa (quand l et p coincident) et Washington (quand l est différent de p), et d'une conjecture de Greenberg. Dans cet exposé, basé sur un travail en commun avec Daniel Vallières, nous montrerons comment ces résultats se globalisent, en considérant une tour des graphs dont le groupe de Galois est isomorphe aux entiers. En particulier, nous montrerons que dans ce cas les invariants d'Iwasawa peuvent être calculés grâce à un polynôme associé à la tour, et à ses mesures de Mahler p-adiques, qui mesurent la distribution p-adique des racines du polynôme en question. Enfin, nous montrerons comment ce théorème peut être utilisé pour récupérer des résultats antécédents autours des asymptotiques des nombres d'arbres couvrants de certains types de graphes, qui généralisent les graphes de Petersen, et pour montrer une formule explicite pour les valuations p-adiques des nombres de Fibonacci, due à Lengyel.
Le 20 octobre 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de conférences
Cathy Swaenepoel (Institut de Mathématiques de Jussieu - Paris Rive Gauche)
Nombres premiers réversibles
Les propriétés des chiffres des nombres premiers et de diverses autres suites de nombres entiers ont suscité beaucoup d'intérêt ces dernières années. Pour tout nombre entier naturel $k$, nous notons $\overleftarrow{k}$ le miroir de $k$ en base 2, défini par
$$ \overleftarrow{k} = \sum_{j=0}^{n-1} \varepsilon_j\,2^{n-1-j}
\quad
\mbox{ où }
\quad
k = \sum_{j=0}^{n-1} \varepsilon_{j} \,2^j$$
avec $\varepsilon_j \in \{0,1\}$, $j\in\{0, \ldots, n-1\}$, $ \varepsilon_{n-1} = 1$. Une question naturelle est d'estimer le nombre de nombres premiers $p\in \left[2^{n-1},2^n\right[$ tels que $\overleftarrow{p}$ est également premier. Nous présenterons un résultat fournissant une majoration de l'ordre de grandeur attendu. Notre méthode est fondée sur une technique de crible. Elle nous permet aussi de montrer qu'il existe une infinité de nombres entiers $k$ tels que $k$ et $\overleftarrow{k}$ ont au plus 8 facteurs premiers, comptés avec multiplicité.
Enfin, nous présenterons une formule asymptotique pour le nombre de nombres
entiers $k\in \left[2^{n-1},2^n\right[$ tels que $k$ et $\overleftarrow{k}$ sont sans facteur carré.
Il s'agit d'un travail en commun avec Cécile Dartyge, Bruno Martin, Joël Rivat et Igor Shparlinski.
Le 27 octobre 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de conférences
Sary Drappeau (Institut de Mathématiques de Marseille)
Formes modulaires quantiques de poids non-nul
Dans un travail récent avec Sandro Bettin ((Gênes)), on étudie les applications $f : \mathbb{Q} → \mathbb{C}$ qui satisfont des équations fonctionnelles du type suivant : pour tout $γ ∈ SL(2, \mathbb{Z})$, la différence $h_γ(x) := f(γ x) - |cx + d|^{-k} f(x)$ a de bonnes propriétés de régularité. Ici k est un nombre complexe. Cette définition est due à Zagier ((2010)), et une telle applications f est dite "modulaire quantique". Parmi les exemples naturels notables, on trouve les intégrales d'Eichler de formes modulaires classiques ou de formes de Maass, ou bien des sommes de cotangentes. Dans cet exposé on s'intéressera au cas où $Re(k)eq 0$, et à l'existence de fonctions limites qui nous permettent de prédire la répartition des valeurs de f sur les rationels dont le dénominateur tend vers l'infini.
Le 10 novembre 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de conférences
Matilde Maccan (IRMAR)
Variétés homogènes projectives rationnelles en caractéristique positive
Toute variété homogène, projective et rationnelle peut s’écrire comme quotient d’un groupe semisimple par un sous-groupe dit parabolique. Dans cet exposé, on généralisera les résultats de Wenzel, Haboush et Lauritzen en traitant le cas des sous-groupes paraboliques sur un corps algébriquement clos de caractéristique petite, achevant ainsi leur classification en toute caractéristique.
Le 17 novembre 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de conférences
Daniel Vargas-Montoya (IMPAN)
Congruences, indépendance algébrique et Monodromie
Récemment Adamczeswki Bell et Delaygue ont donné un critère d’indépendance algébrique pour les séries à coefficients dans Z qui vérifient certaines congruences modulo p pour une infinité de nombres premiers p. À savoir : les congruences de type «Lucas». Il s’avère que la plupart des séries qui vérifient telles congruences sont des G-functions. Dans un premier temps, nous allons donc voir comment obtenir ce type de congruences lorsque la série est une solution d’un opérateur différentiel. Les outils essentiels sont d’une part l’étude p-adique de l’opérateur différentiel, structure de Frobenius forte, et d’autre part la notion classique de monodromie unipotente maximale. Dans un deuxième temps, je vais introduire un nouvel ensemble de G-functions dénoté MF. Nous montrons donc que les éléments de MF vérifient des congruences assez convenables. Dans un troisième temps, nous verrons que pour certains éléments de MF ces congruences sont aussi pertinentes pour établir leur indépendance algébrique.
Le 24 novembre 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de conférences
Michel Brion (Université Grenoble Alpes)
Automorphismes infinitésimaux des courbes algébriques
L'exposé portera sur les courbes algébriques projectives sur un corps de caractéristique positive. Leurs groupes d'automorphismes ont été beaucoup étudiés, mais les schémas en groupes d'automorphismes (par exemple, les champs de vecteurs) sont bien plus mystérieux. En particulier, la correspondance classique entre automorphismes des courbes projectives normales et de leurs corps de fonctions ne
s'étend pas aux schémas en groupes. L'exposé introduira une notion de "normalisation équivariante" qui permet de remédier à ce problème, et il présentera quelques propriétés des courbes "G-normales", dont leur structure pour un schéma en groupes G fini et diagonalisable.
Le 1er décembre 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de conférences
Sylvain Brochard (Université de Montpellier 2)
Critères de platitude : deux conjectures de C. Khare
Soit $(A,m,k)$ un anneau local noethérien et soit P un complexe de longueur $d$ (finie) de $A$-modules libres de rangs finis. On note $edim(A)=dim_k(m/m^2)$ la dimension de plongement de $A$, et $D(A)$ la catégorie dérivée des complexes de A-modules. On suppose que le morphisme naturel $A\rightarrow End_{D(A)}(P)$ se factorise par un anneau local noethérien $B$ dont la dimension de plongement est inférieure ou égale à $edim(A)-d$. Une conjecture de Khare prédit alors que le dernier groupe d'homologie de $P$ est un $B$-module libre. Je présenterai et motiverai cette conjecture, et ses liens avec les méthodes dites de "patching" couramment utilisées par les théoriciens des nombres dans les problèmes de relèvement modulaire. Puis je donnerai quelques résultats partiels obtenus en collaboration avec S. Iyengar et C. Khare. Si le temps le permet, je présenterai rapidement une autre conjecture de Khare dans l'esprit du critère numérique de Taylor et Wiles revisité par Diamond.
Le 8 décembre 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de conférences
Benoit Loisel (Université de Poitiers)
Sur certains sous-groupes arithmétiques des groupes de Chevalley
Soit $\mathcal{C}$ une courbe projective lisse géométriquement intègre sur $\mathbb{F}$. Si $S$ est un ensemble fini de points fermés, on peut considérer l'anneau d'entiers des fonctions régulières sur $\mathcal{C}$ hors de $S$, noté $\mathcal{O}_S$ et son corps des fractions $k$. L'enjeu de la théorie des groupes $S$-arithmétiques est de comprendre la structure et les propriétés des groupes $G(\mathcal{O}_S)$ pour un schéma en groupes $\mathbb{G}$.
Dans le cas particulier du groupe $\mathbf{G}=\mathrm{SL}_2$ et d'un singleton $S=\{P\}$, Serre a décrit la structure de ces groupes via leur action sur l'arbre de Bruhat-Tits, ce qui permet de les réaliser comme amalgames de groupes. Dans le cas de la droite projective $\mathbb{P}^1$ privée de son point à l'infini, i.e. $\mathcal{O}_{\infty}=\mathbb{F}[t]$, et d'un groupe déployé $\mathbf{G}$, Soulé obtient que l'espace des orbites de l'action de $\mathbf{G}(\mathbb{F}[t])$ sur l'immeuble de Bruhat-Tits est isomorphe à un quartier de cet immeuble.
Dans cet exposé, en adaptant des techniques utilisées par Mason sur $\mathrm{SL}_2$, nous verrons que l'espace des orbites de l'action d'un groupe déployé arbitraire sur l'anneau d'entier associé à un point fermé de la courbe projective est constitué d'une quantité de quartiers en lien avec le groupe de Picard de l'anneau d'entiers, et quelques conséquences de ces techniques.
Il s'agit d'un travail en commun avec Claudio Bravo.
Le 15 décembre 2023
à 14:00
Séminaire de Théorie des Nombres
Salle de conférences
Christian Maire (Université de Franche-Comté)
Extensions modérément ramifiées, corps gouvernants et obstructions
Soit $K$ un corps de nombres et soit $G^{ta}$ le groupe de Galois de l'extension galoisienne maximale $K^{ta}$ de $K$, modérément ramifiée.
Soit $p$ un nombre premier. Dans cet exposé on s'intéresse aux pro-$p$-quotients de $G^{ta}$, dans l'esprit du théorème de Scholz-Reichardt.
En particulier, on fera ressortir le lien entre une obstruction à un problème de plongement et un corps gouvernant.
C'est un travail en commun avec Farshid Hajir, Michael Larsen et Ravi Ramakrishna.
Les anciens séminaires