ACTUALITÉS

Félicitations à Marius Tucsnak qui vient d’être nommé membre Senior de l’Institut Universitaire de France.

Le prix ECCOMAS Jacques-Louis Lions pour jeune chercheur a été décerné à Walter Boscheri. Ce prix est décerné à de jeunes chercheurs ayant apporté une contribution exceptionnelle dans le domaine des mathématiques.

Le prix de thèse 2024 Signal, Image et Vision du Club EEA, du GRETSI et du GdR IASIS a été attribué à Samuel Hurault pour ses travaux intitulés "Méthodes plug-and-play convergentes pour la résolution de problèmes inverses en imagerie avec régularisation explicite, profonde et non-convexe". Cette thèse à été réalisée à l’Institut Mathématiques de Bordeaux sous la direction conjointe de N. Papadakis et A. Leclaire.

L’IMB accueille des stagiaires de seconde du 17 au 28 juin 2024. En savoir plus.

L’IMB recrute 3 MCF en 2024. Plus d’informations ici.

Les mathématiques de l’université de Bordeaux se maintiennent en 2023 au rang 51-75 du classement de Shanghai.

Disparition de Pierre Magal.

Dons pour l’Ukraine.

L'IMB en bref

Institut de Mathématiques de Bordeaux UMR 5251

Directeur : Vincent Koziarz


L’Institut de Mathématiques de Bordeaux (IMB) est une unité mixte de recherche (UMR 5251) CNRS - Université de Bordeaux - Bordeaux INP.

Laboratoire d’accueil de l’Ecole Doctorale de Mathématiques et Informatique, l’IMB regroupe l’essentiel de la recherche en mathématiques du site bordelais.
La recherche à l’IMB est structurée autour de sept équipes :
 Analyse (responsable : M. Tucsnak)
 Calcul scientifique et Modélisation (responsable : R. Loubère)
 EDP et Physique mathématique (responsable : L. Michel)
 Géométrie (responsable : L. Bessières)
 Image Optimisation et Probabilités (responsable : J. Bigot)
 Optimisation Mathématique Modèle Aléatoire et Statistique (responsable : B. Detienne)
 Théorie des Nombres (responsable : D.Tossici)

L’IMB collabore avec le centre Inria de l’université de Bordeaux au sein des équipes-projets ASTRAL, CANARI, CARDAMOM, CARMEN, EDGE, MEMPHIS, MONC.

L’IMB participe à un Laboratoire Transfrontalier Commun avec le Basque Center for Applied Mathematics, l’Université du Pays Basque et Tecnalia. L’IMB est aussi partenaire du CEA Cesta via le LRC Anabase, de l’ONERA via la chaire PROVE, et de Naval Group via l’EPC Astral. Il participe actuellement à 35 projets ANR et 6 projets européens, compte 3 membres IUF (dont 1 sénior) et 1 ERC Starting Grant.

Les membres de l’IMB sont localisés sur trois sites :
 Sur le campus de Talence, l’IMB occupe une partie du bâtiment A33 qu’il partage entre autres avec l’UF Mathématiques et Interactions et la Bibliothèque de Mathématiques et Informatique.
 Sur le campus de Talence, dans le centre Inria de l’Université de Bordeaux
 Sur le site de l’hôpital Xavier Arnozan à Pessac au sein de l’IHU Liryc

Pour leurs enseignements, les membres de l’IMB sont affectés aux structures associées :
 UF Mathématiques et Interactions
 ENSEIRB-MATMECA
 IUT Bordeaux
 INSPÉ de l’académie de Bordeaux
 ENSC

AGENDA

  • Le 24 juin 2024 à 09:00 au 28 juin 2024 à 17:00
  • Infos Site Cellule
    Bureau 225
    La Cellule Informatique IMB
    Accueil de la Cellule Informatique

    Une partie de la Cellule Informatique participe à la semaine de travail de l'équipe de la PLM au CIRM du 24 au 28 juin 2024 pouvant impacter des délais de traitements des demandes plus longs que d'habitude.

    Pensez à anticiper les retraits et les réservations de matériel par exemple.


  • Le 24 juin 2024 à 14:00
  • Groupe de Travail Analyse
    Salle de conférences
    Bernhard Haak IMB
    Le calcul fonctionnel Besov de Gomilko et Tomilov

  • Le 25 juin 2024 à 11:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Maria Corte-Real Santos University College London
    SQIsign verification in higher dimensions

    SQIsign is an isogeny-based signature scheme in Round 1 of NIST’s recent alternate call for signature schemes. In this talk, we will take a closer look at SQIsign verification and demonstrate that it can be performed completely on Kummer surfaces. In this way, one-dimensional SQIsign verification can be viewed as a two-dimensional isogeny between products of elliptic curves. Curiously, the isogeny is then defined over Fp rather than Fp2. Furthermore, we will introduce new techniques that enable verification for compression signatures using Kummer surfaces, in turn creating a toolbox for isogeny-based cryptography in dimension 2.This is based on joint work with Krijn Reijnders.


  • Le 25 juin 2024 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de conférences
    Chérif Amrouche U. Pau
    Dirichlet problem for the Laplacian and the Bilaplacian in Lipschitz Domains


    We are interested here in questions related to the maximal regularity of solutions of elliptic problems div $(A abla\, u) = f$ in $\Omega$ with Dirichlet boundary condition. For the last 40 years, many works have been concerned with questions when $A$ is a matrix or a function and when $\Omega$ is a Lipschitz domain. Some of them contain incorrect results that are corrected in the present work.


    We give here new proofs and some complements for the case of the Laplacian, the Bilaplacian and the operator $\mathrm{div}\, (A abla)$, when ${\bf A}$ is a matrix or a function. And we extend this study to obtain other regularity results for domains having an adequate regularity. We give also new results for the {Dirichlet-to-Neumann operator for Laplacian and Bilaplacian.


    Using the duality method, we can then revisit the work of Lions-Magenes, concerning the so-called very weak solutions, when the data are less regular.

    Thanks to the interpolation theory, it permits us to extend the classes of solutions and then to obtain new results of regularity.


  • Le 26 juin 2024 à 11:00
  • Séminaire Optimisation Mathématique Modèle Aléatoire et Statistique
    Salle 2, IMB
    Gael Guillot Inria Lille
    Tarification stratégique sur les marchés de l'électricité avec contraintes de pollution

    Dans cette présentation, nous exposons un problème bi-niveaux, multi leader- single follower, de tarification sur le marché de l'électricité. Les meneurs correspondent aux sociétés productrices d'énergie qui doivent soumettre une offre à un agent centralisateur (ISO). L'ISO sélectionne les offres et distribue la demande sur le réseaux. Les générateurs sont composés de plusieurs technologies de production, avec différents coûts et quantités de pollution produite. Nous exposerons les particularités de ce problème ainsi que les différents algorithmes qui permettent de trouver un ou plusieurs équilibres de Nash.


  • Le 27 juin 2024 à 14:00
  • Séminaire d'Analyse
    Salle de conférences
    Shirshendu Chowdhury Kolkatta (India)
    Boundary null-controllability of 1d linearized compressible Navier-Stokes System by one Dirichlet control force.

    In the first part of the talk, we introduce the concept: Controllability of Differential Equations. Then we give some examples in finite (ODE) and infinite dimensional(PDE) contexts. We recall the controllability results of the Transport and Heat equation.


    In the second part of the talk, we consider compressible Navier-Stokes equations in one dimension, linearized around a positive constant steady state . It is a Coupled system of Transport (for density) and Heat type (for velocity) equations.  We study the boundary null-controllability  of this linearized system in an interval when a Dirichlet control function is acting either only on the density or only on the velocity component at one end of the interval. In this setup, we state some new control results which we have obtained. We see that these controllability results are optimal/sharp concerning the regularity of initial states (in the velocity case) and time (in the density case). The proof is based on a spectral analysis and on solving a mixed parabolic-hyperbolic moments problem and a parabolic hyperbolic joint Ingham-type inequality.  This is a joint work with Kuntal Bhandari, Rajib Dutta and Jiten Kumbhakar. Finally, the talk ends with some ongoing and future directions of research.




  • Le 27 juin 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Davide Torlo SISSA Trieste
    Structure preserving methods via Global Flux quadrature: divergence-free preservation with continuous Finite Element
    In many problems, the emergence of physical structures and equilibrium solutions, such as divergence-free solutions in contexts like shallow water and magneto-hydrodynamics, poses a significant challenge. A simple linear approximation of such systems that already show these behavior is the linear acoustic system of equations. We focus on Cartesian grid discretizations of such system in 2 dimensions and in the preservation of stationary solutions that arise due to a truly multidimensional balance of terms, which corresponds to the divergence-free solutions for acoustic systems.
    Conventional methods, like the continuous Finite Element SUPG, face limitations in maintaining these structures due to the stabilization techniques employed, which do not effectively vanish when the discrete divergence is zero.
    What we propose is to use the Global Flux procedure, which has proven to be successful in preserving 1-dimensional equilibria [1,2], to define some auxiliary variables guiding a suitable discretization of both the divergence and stabilization operators [3]. This approach enables the natural preservation of divergence-free solutions and more intricate equilibria involving various sources. Moreover, this strategy facilitates the identification of discrete equilibria of the scheme that verify boundary or initial conditions. We use the Deferred Correction time discretization, obtaining explicit arbitrarily high order methods.
    Numerous numerical tests validate the accuracy of our proposed scheme compared to classical approaches. Our method not only excels in preserving (discretely) divergence-free solutions and their perturbations but also maintains the original order of accuracy on smooth solutions.

    [1] Y. Cheng, A. Chertock, M. Herty, A. Kurganov and T. Wu. A new approach for designing moving-water equilibria preserving schemes for the shallow water equations. J. Sci. Comput. 80(1): 538–554, 2019.
    [2] M. Ciallella, D. Torlo and M. Ricchiuto. Arbitrary high order WENO finite volume scheme with flux globalization for moving equilibria preservation. Journal of Scientific Computing, 96(2):53, 2023.
    [3] W. Barsukow, M. Ricchiuto and D. Torlo. Structure preserving methods via Global Flux quadrature: divergence-free preservation with continuous Finite Element. In preparation, 2024.
  • Le 28 juin 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Thai-Hoang Lê (Université du Mississippi)
    Les ensembles intersectifs et les ensembles épars

    Un sous-ensemble $A$ de $\mathbf{N}$ est dit dense s’il est de densité asymptotique supérieure positive, et épars s’il est de densité nulle. Un théorème classique de Furstenberg et Sarközy dit que si $A$ est dense, alors il existe des éléments distincts $a, a'$ dans $A$ tels que $a-a' = n^2$ pour un certain entier $n$. Un ensemble $H$ d'entiers positifs est dit intersectif si l'on peut remplacer l'ensemble des carrés par $H$ dans le théorème de Furstenberg-Sarközy, autrement dit si $(A-A) \cap H$ est non vide. L'étude des ensembles intersectifs se trouve à l'intersection de plusieurs domaines de mathématiques, y compris la théorie des nombres, la combinatoire et la théorie ergodique.

    Dans cet exposé, je discuterai dans quelle mesure ce phénomène est toujours valable, lorsque $A$ est un sous-ensemble dense de l'ensemble des nombres premiers, ou plus généralement d'un ensemble épars quelconque $E$ (à la place de $\mathbf{N}$). Il s'agit d'un travail en commun avec J. T. Griesmer, P.-Y. Bienvenu et A. Le.


    En savoir plus