ACTUALITÉS
Interview de Magalie Bénéfice qui vient d’obtenir un post-doctorat long en Mathématiques au sein de l’Institut Elie-Cartan de Lorraine (IECL) à Nancy.
Les inscriptions pour les demandes de stages de seconde seront ouvertes à partir du 2 janvier 2025.
Le programme Partenariats Hubert Curien vient d’attribuer un financement à Jasmin Raissy, afin de développer les échanges scientifiques internationaux avec l’università degli studi di Parma.
Le "Plan de conservation partagée des périodiques imprimés de Mathématiques" (PCMath) est lauréat du Cristal collectif 2024. A travers la qualité de son fond documentaire et l’implication de deux membres de l’IMB dans le Comité de pilotage du Plan, la BMI et l’IMB occupent une place prépondérante au sein du réseau national des bibliothèques de mathématiques et du PCMath.
Félicitations à Marius Tucsnak qui vient d’être nommé membre Senior de l’Institut Universitaire de France.
Le prix ECCOMAS Jacques-Louis Lions pour jeune chercheur a été décerné à Walter Boscheri. Ce prix est décerné à de jeunes chercheurs ayant apporté une contribution exceptionnelle dans le domaine des mathématiques.
L'IMB en bref
Institut de Mathématiques de Bordeaux UMR 5251
Directeur : Vincent Koziarz
L’Institut de Mathématiques de Bordeaux (IMB) est une unité mixte de recherche (UMR 5251) CNRS - Université de Bordeaux - Bordeaux INP.
Laboratoire d’accueil de l’Ecole Doctorale de Mathématiques et Informatique, l’IMB regroupe l’essentiel de la recherche en mathématiques du site bordelais.
La recherche à l’IMB est structurée autour de sept équipes :
– Analyse (responsable : M. Tucsnak)
– Calcul scientifique et Modélisation (responsable : R. Loubère)
– EDP et Physique mathématique (responsable : L. Michel)
– Géométrie (responsable : L. Bessières)
– Image Optimisation et Probabilités (responsable : J. Bigot)
– Optimisation Mathématique Modèle Aléatoire et Statistique (responsable : B. Detienne)
– Théorie des Nombres (responsable : D.Tossici)
L’IMB collabore avec le centre Inria de l’université de Bordeaux au sein des équipes-projets ASTRAL, CANARI, CARDAMOM, CARMEN, EDGE, MEMPHIS, MONC.
L’IMB participe à un Laboratoire Transfrontalier Commun avec le Basque Center for Applied Mathematics, l’Université du Pays Basque et Tecnalia. L’IMB est aussi partenaire du CEA Cesta via le LRC Anabase, de l’ONERA via la chaire PROVE, et de Naval Group via l’EPC Astral. Il participe actuellement à 35 projets ANR et 6 projets européens, compte 3 membres IUF (dont 1 sénior) et 1 ERC Starting Grant.
Les membres de l’IMB sont localisés sur trois sites :
– Sur le campus de Talence, l’IMB occupe une partie du bâtiment A33 qu’il partage entre autres avec l’UF Mathématiques et Interactions et la Bibliothèque de Mathématiques et Informatique.
– Sur le campus de Talence, dans le centre Inria de l’Université de Bordeaux
– Sur le site de l’hôpital Xavier Arnozan à Pessac au sein de l’IHU Liryc
Pour leurs enseignements, les membres de l’IMB sont affectés aux structures associées :
– UF Mathématiques et Interactions
– ENSEIRB-MATMECA
– IUT Bordeaux
– INSPÉ de l’académie de Bordeaux
– ENSC
AGENDA
Exceptionnellement, l'accueil de la Cellule Informatique au bureau 225
- ne sera ouvert qu'à partir de 10h
- et sera fermé vendredi
- et il n'y aura pas d'accueil au bureau 270.
en raison de la participation d'une partie de l'équipe informatique à l'Action Nationale de Formation Mathrice au CIRM à Marseille.
- Pensez à anticiper les retraits de matériel de prêt.
We investigate the connection between the propagation of smallness in two dimensions and one-dimensional spectral estimates. The phenomenon of smallness propagation in the plane, originally obtained by Yuzhe Zhu, reveals how the value of solutions in a small region extends to a larger domain. By revisiting Zhu’s proof, we obtain a quantitative version that includes an explicit dependence on key parameters. This refinement enables us to establish spectral inequalities for one-dimensional Schrödinger operators.
Dans le sillage d'une éolienne ou d'un hélicoptère se créent naturellement des filaments de tourbillon en forme d'hélice. Le mouvement des filaments de tourbillon fait l'objet d'une conjecture importante : lorsque le diamètre du filament tend vers 0 (en conservant son intensité), son mouvement devrait suivre en première approximation le flot par courbure binormale. Cette conjecture n'est prouvée que pour les filaments rectilignes et pour les anneaux de tourbillon. Nous montrons, dans le contexte des équations d'Euler 3D incompressibles en symétrie hélicoïdale que les filaments hélicoïdaux suffisamment concentrés suivent également le flot par courbure binormal.
The slides are in english but the talk will be in french.
In a category enriched in a closed symmetric monoidal category, the power
object construction, if it is representable, gives a contravariant monoidal
action. We first survey the construction, due to Serre, of the power object
by (projective) Hermitian modules on abelian varieties. The resulting
action, when applied to a primitively oriented elliptic curve, gives a
contravariant equivalence of category (Jordan, Keeton, Poonen, Rains,
Shepherd-Barron and Tate).
We then give several applications of this module action:
1) We first explain how it allows to describe purely algebraically the
ideal class group action on an elliptic curve or the Shimura class group
action on a CM abelian variety over a finite field, without lifting to
characteristic 0.
2) We then extend the usual algorithms for the ideal action to the case of
modules, and use it to explore isogeny graphs of powers of an elliptic
curve in dimension up to 4. This allows us to find new examples of curves
with many points. (This is a joint work with Kirschmer, Narbonne and
Ritzenthaler)
3) Finally, we give new applications for isogeny based cryptography. We
explain how, via the Weil restriction, the supersingular isogeny path
problem can be recast as a rank 2 module action inversion problem. We also
propose ⊗-MIKE a novel NIKE (non interactive isogeny key exchange) that only
needs to send j-invariants of supersingular curves, and compute a dimension
4 abelian variety as the shared secret.
Les algorithmes quantiques sont une piste majeure d'accélération pour certains calculs. Dans cet exposé, nous présenterons les principaux problèmes susceptibles d'en bénéficier. Nous développerons également quelques grands principes sous-jacents à ces algorithmes.
Beaucoup de problèmes, notamment en machine learning, peuvent se formuler comme des problèmes d'optimisation. Pour résoudre ces problèmes, les algorithmes de gradients (types descente de gradient) sont très populaires. En particulier, modifier la descente de gradient en y incorporant un méchanisme d'inertie permet d'en accélérer la vitesse. Cependant, l'émergence de grosses bases de données rend le calcul du gradient très coûteux. En pratique donc, on préférera souvent utiliser des techniques d'échantillonnages pour utiliser une approximation moins coûteuse du gradient. Dans cette présentation, on s'intéresse à la possibilité de conserver des propriétés d'accélération de la descente de gradient grâce à l'ajout d'inertie, lorsque de telles approximations du gradient sont utilisées.
Seminaire joint avec Optimal
This talk focuses on models for multivariate count data, with emphasis on species abundance data. Two approaches emerge in this framework: the Poisson log-normal (PLN) and the Tree Dirichlet multinomial (TDM) models. The first uses a latent gaussian vector to model dependencies between species whereas the second models dependencies directly on observed abundances. The TDM model makes the assumption that the total abundance is fixed, and is then often used for microbiome data since the sequencing depth (in RNA seq) varies from one observation to another leading to a total abundance that is not really interpretable. We propose to generalize TDM model in two ways: by relaxing the fixed total abundance and by using Polya distribution instead of Dirichlet multinomial. This family of models corresponds to Polya urn models with a random number of draws and will be named Polya splitting distributions. In a first part I will present the probabilistic properties of such models, with focus on marginals and probabilistic graphical model. Then it will be shown that these models emerge as stationary distributions of multivariate birth death process under simple parametric assumption on birth-death rates. These assumptions are related to the neutral theory of biodiversity that assumes no biological interaction between species. Finally, the statistical aspects of Polya splitting models will be presented: the regression framework, the inference, the consideration of a partition tree structure and two applications on real data.
Les métriques Lorentziennes à courbure constante ayant un nombre fini de singularités coniques offrent de nouveaux exemples naturels de structures géométriques sur le tore. Des travaux de Troyanov sur leur analogue Riemannien ont montré que la donnée de la structure conforme et des angles aux singularités classifient entièrement les métriques Riemanniennes à singularités coniques. Dans cet exposé nous nous intéresserons aux tores de-Sitter singuliers, en construirons des exemples, et présenterons un phénomène de rigidité rappelant celui de Troyanov : les tores de-Sitter à une singularité d'angle fixé sont déterminés par la classe d'équivalence topologique de leur bi-feuilletage lumière. Nous verrons que cette question géométrique est intimement liée à un problème de dynamique sur les difféomorphismes par morceaux du cercles.
In this talk, we investigate intersecting codes. In the Hamming metric, these are codes where two nonzero codewords always share a coordinate in which they are both nonzero. Based on a new geometric interpretation of intersecting codes, we are able to provide some new lower and upper bounds on the minimum length $i(k, q)$ of intersecting codes of dimension k over $\mathbb{F}_q$, together with some explicit constructions of asymptotically good intersecting codes. We relate the theory of intersecting codes over $\mathbb{F}_q$ with the theory of $2$-wise weighted Davenport constants of certain groups, and to nonunique factorization theory. Finally, we will present intersecting codes in the rank metric.