IMB > Informations générales > Agendas

Tous les événements à venir

N’afficher que les événements de cette semaine

  • Le 27 février 2024 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de conférences
    Pas de séminaire

  • Le 27 février 2024 à 11:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Pierre Briaud Inria Paris
    Variants of the Decoding Problem and algebraic cryptanalysis
    The intractability of decoding generic linear codes is at the core of an important branch of post-quantum cryptography.
    In this context, the code is random by design or it is assumed to be so in the security reduction.

    This talk will focus on versions of the Decoding Problem where the error vector is structured, in general to achieve better performance.
    While combinatorial techniques such as Information Set Decoding are often the method of choice to attack these versions, I will describe the potential of algebraic algorithms.

    I will mostly consider the Regular Syndrome Decoding Problem and a paper presented at Eurocrypt 2023.
    I will also mention ongoing work on an assumption used in the CROSS submission to new call for signature schemes launched by NIST.
  • Le 1er mars 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Vacances

  • Le 4 mars 2024 à 09:00 au 8 mars 2024 à 17:00
  • Manifestations Scientifiques
    Le Teich
    Contacts : Vincent Delecroix - Kai Fu - Elise Goujard - Duc Manh Nguyen - Ivan Yakolev
    Ecole surfaces plates interactions

  • Le 4 mars 2024 à 14:00
  • Groupe de Travail Analyse
    Salle de conférences
    Bernard Haak IMB
    Théorèmes abstraits de type Fubini
    Soit $f: A \times B$ une fonction numérique de 2 variables, et soient
    $\mu$, $\phi$ deux fonctionnelles linéaires respectivement sur l'espace
    des fonctions de $A$ dans $C$ et de $B$ dans $C$.

    On pose la question sous quelles hypothèses on peut échanger leurs
    évaluations, i.e. obtenir une égalité
    $$ \mu( a\mapsto \phi (f(a,.)) ) = \phi( b\mapsto \mu (f(.,b)) )$$
    Un théorème, qui donne des cond. suffisantes pour ceci, sera appelé un
    "thm. de Fubini abstrait".

    Je présente dans cet exposé un résultat, où la fonction $f$ est supposée
    (pluri-) holomorphe en une des deux variables, lorsqu'on "gèle" l'autre.
    Les preuves ne font pas appel à la théorie de la mesure, mais uniquement
    à l'analyse fonctionnelle classique (mais moins connue), que je
    rappelle. Ensuite je compare le résultat à autre approches.
  • Le 5 mars 2024 à 11:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Yuri Bilu IMB
    Skolem meets Schanuel
    A linear recurrence of order~$r$ over a number field~$K$ is a map ${U:\mathbb{Z}\to K}$ satisfying a relation of the form
    $$
    U(n+r)=a_{r-1}U(n1)+ \cdots+ a_0U(n) \qquad (n\in \mathbb{Z}),
    $$
    where ${a_0, \ldots, a_{r-1}\in K}$ and ${a_0e 0}$. A linear recurrence is called simple if the characteristic polynomial ${X^r-a_{r-1}X^{r-1}-\ldots- a_0}$ has only simple roots, and non-degenerate if ${\lambda/\lambda'}$ is not a root of unity for any two distinct roots $\lambda, \lambda'$ of the characteristic polynomial. The classical Theorem of Skolem-Mahler-Lech asserts that a non-degenerate linear recurrence may have at most finitely many zeros. However, all known proofs of this theorem are non-effective and do not produce any tool to determine the zeros.


    In this talk I will describe a simple algorithm that, when terminates, produces the rigorously certified list of zeros of a given simple linear recurrence. This algorithm always terminates subject to two celebrated conjectures: the $p$-adic Schanuel Conjecture, and the Exponential Local-Global Principle. We do not give any running time bound (even conditional to some conjectures), but the algorithm performs well in practice, and was implemented in the \textit{Skolem tool}
    $$
    \text{https://skolem.mpi-sws.org/}
    $$
    that I will demonstrate. This is a joint work with Florian Luca, Joris Nieuwveld, Joël Ouaknine, David Purser and James Worrell.
  • Le 5 mars 2024 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Bordeaux
    In-Jee Jeong NSU
    BBT in Bordeaux
    TBA
  • Le 7 mars 2024 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de conférénces
    Radu-Alexandru Dragomir EPFL
    À préciser
    À préciser
  • Le 7 mars 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Salah-Eddine ZERROUQ Ensam
    [Seminaire CSM] Une méthode quasi-Newton pour le calcul de carènes optimales basée sur la formule de Michell pour des vitesses aléatoires
    Dans cet exposé on propose une discrétisation de la méthode de Newton pour l’optimisation de forme de carènes de bateaux, partie du navire sous l’eau, basé sur la résistance de Michell avec une vitesse "aléatoire". La théorie de Michell pour les bateaux à coque fine donne une formule explicite pour la résistance des vagues pour une vitesse donnée du navire. La question de trouver la carène optimale qui minimise la résistance des vagues de Mitchell pour une vitesse donnée a été examinée dans ref{2} pour un support fixe, et ensuite dans ref{1} pour un support variable. Suite au succès des résultats numériques, qui se rapprochent des formes utilisées dans l’industrie. il est naturel de se poser la question sur la forme de carène optimale pour des vitesses aléatoires. L’idée, donc, est de calculer la forme optimale qui minimise l’espérance de la résistance de Michell pour une distribution de vitesse donnée. Pour ce faire, le problème est réécrit comme un problème d’optimisation de forme : trouver le domaine optimal pour minimiser l’énérgie de Dirichlet avec un terme source f considéré comme l’éspérance du noyau de la résistance de Michell. Ce problème est bien étudié dans la littérature, et on dispose de nombreux résultats sur l’existence de solutions, sur les dérivées de forme ainsi que leur régularité qu’on peut exploiter pour effectuer une méthode de descente en faisant varier le domaine. Ces méthodes de variation du domaine, nécéssitent en général un nombre élevé d’itérations pour converger, ce problème, coupler avec le fait qu’on doit à chaque itération calculer une approximation de l’espérance du noyau de la résistance de Michell, dont la qualité dépendra de notre échantillonage des vitesses, fait qu’on se retrouve avec des temps de calcul trop élevé pour trouver une solution. D’où notre interêt à utiliser une méthode de Newton pour minimiser le nombre d’itérations de notre algorithme. Cette méthode a été étudiée dans ref{3}, et il est connu que beaucoup d’obstacle empêchent son utilisation pour l’optimisation de forme :
    1. Les formules pour la deuxième dérivée de forme d’une fonctionnelle J(Ω) sont complexes et nécessitent souvent la résolution de problèmes adjoints.
    2. Avoir une expression de cette dérivée sur le bord du domaine nécessitent une grande régularité du domaine considéré.
    3. À priori La matrice Hessienne n’a aucune raison d’être inversible.
    Dans ce travail on propose une discrétisation qui permet de contourner ces problèmes de régularité du bord et des dérivées de forme, et donc permet de trouver une solution avec, ou sans contrainte, même dans des situations où la deuxième dérivée n’est pas bien définie.

    - ref{1}: J. Dambrine, M. Pierre. Continuity with respect to the speed for optimal ship forms based on
    michell’s formula. Mathematical Control Related Fields, 0, –, 2021.
    - ref{2}: D. J., P. M., R. G. A theoretical and numerical determination of optimal ship forms based on michell’s wave resistance. ESAIM - Control, Optimisation and Calculus of Variations, 22(1), 88 – 111, 2016.
    - ref{3}: J.-L. Vie. Second-order derivatives for shape optimization with a level-set method. Ph.D. thesis, 2016. Thèse de doctorat dirigée par Cancès, Eric et Allaire, Grégoire Mathématiques Paris Est 2016.
  • Le 7 mars 2024 à 14:00
  • Séminaire d'Analyse
    Salle de conférences
    Yannick Privat Nancy
    L’inégalité de Faber-Krahn en mécanique des fluides
    Cet exposé est dédié à la minimisation de la première valeur propre de l’opérateur de Dirichlet-Stokes incompressible (vectoriel). Nous prouvons le résultat surprenant suivant : alors que la boule est un minimiseur local de ce problème en dimension 2, ce n'est pas le cas en dimension 3, de sorte que l'inégalité de Faber-Krahn pour l'opérateur de Stokes est probablement vraie en $\mathbb{R}^2$, mais ne se vérifie pas dans $\mathbb{R}^3$.
    Cet exposé sera l’occasion de présenter quelques problèmes ouverts dans le domaine de l’optimisation de forme en mécanique des fluides.
    Il s’agit d’un travail en collaboration avec Idriss Mazari (univ. Paris Dauphine) et Antoine Henrot (univ. Lorraine)
  • Le 8 mars 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Guillaume Baverez (Berlin)
    The conformal blocks of Liouville conformal field theory
    Liouville CFT is one of the few non-trivial CFTs for which the path integral can be rigorously defined. Starting from this path integral, we give an intrinsic construction of the conformal blocks of the theory, and make contact with the usual formulation of CFT found in algebraic geometry. The key ingredients are a probabilistic construction of the Virasoro algebra, and the spectral resolution of the Hamiltonian. At the end, I will mention some questions left open, such as modular transformations and curvature properties of the bundle of blocks. Joint and ongoing works with Guillarmou, Kupiainen, Rhodes and Vargas.
  • Le 8 mars 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Matthew Satriano (University of Waterloo)
    Unifying the Batyrev-Manin and Malle Conjectures
    The Batyrev-Manin conjecture gives a prediction for the asymptotic growth rate of rational points on varieties over number fields when we order the points by height. The Malle conjecture predicts the asymptotic growth rate for number fields of degree d when they are ordered by discriminant. The two conjectures have the same form and it is natural to ask if they are, in fact, one and the same. We develop a theory of point counts on stacks and give a conjecture for their growth rate which specializes to the two aforementioned conjectures. This is joint work with Jordan Ellenberg and David Zureick-Brown. No prior knowledge of stacks will be assumed for this talk.
  • Le 11 mars 2024 à 14:00
  • Groupe de Travail Analyse
    Salle de conférences
    Jasmin Raissy IMB
    TBA

  • Le 12 mars 2024 à 11:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Olivier Ruatta Université de Limoges
    Polynômes linéarisés et cryptographie en métrique rang

  • Le 12 mars 2024 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de conférences
    Kai Koike Tokyo Tech
    TBA
    TBA
  • Le 14 mars 2024 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de conférences
    Jianyu Ma Université de Toulouse
    À préciser...
    À préciser
  • Le 14 mars 2024 à 14:00
  • Séminaire d'Analyse
    Salle de conférences
    Angkana Rüland Bonn
    Tba

  • Le 15 mars 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Laurent Bessières (Bordeaux IMB)
    $\mu$-bulles et variétés à courbure scalaire strictement positive en dimensions 4 et 5, d'après O. Chodosh, C. Li et Y. Liokumovich
    Nous présentons les travaux récents de Chodosh-Li et Chodosh-Li-Liokumovich sur la courbure scalaire en dimension 4 et 5. La problématique générale est :

    Quelles variétés admettent des métriques riemanniennes complètes de courbure scalaire strictement positive ?

    En dimension 3, après les grandes avancées de Schoen et Yau et de Gromov et Lawson dans les années 80, la question a finalement été résolue par Perelman (pour les variétés fermées) : ce sont les sommes connexes de $\mathbf{S}^2 \times \mathbf{S^1}$ et de $\mathbf{S}^3/\Gamma$, $\Gamma \subset SO_4({\mathbb R})$. Les travaux présentés investiguent des généralisations de cette classification en dimension 4 et 5.
  • Le 15 mars 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Francesco Baldassari (Padova University)
    TBA
    ...
  • Le 18 mars 2024 à 14:00
  • Groupe de Travail Analyse
    Salle de conférences
    Michel Bonnefont IMB
    TBA

  • Le 19 mars 2024 à 11:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Rocco Mora CISPA
    TBA

  • Le 19 mars 2024 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de conférence
    Shu Nakamura Gakushuin University\, Tokyo
    Topics on the essential self-adjointness for Klein-Gordon type operators on spacetimes
    We discuss recent results on the essential self-adjointness
    of Klein-Gordon type operators on several classes of spacetimes. The
    first one is the asymptotically flat spacetime, which was studied
    previously by A. Vasy (J. Spectral Theory 2020) and by us (Ann. H.
    Lebesgue 2021), but we present a new simpler proof (Ann. H. Poincaré
    2023). We also discuss the essential self-adjointness for the
    asymptotically static spacetime, which is Cauchy compact (Comm. Math.
    Phys. 2023). These results are joint work with Kouichi Taira
    (Ritsumeikan University).
  • Le 21 mars 2024 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Bologne et Toulouse
    Laura Girometti et Léo Portales À preciser
    À preciser
    Deux doctorants
  • Le 21 mars 2024 à 14:00
  • Séminaire d'Analyse
    Salle de conférences
    Michael Hartz Saarland
    Tba

  • Le 21 mars 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Mathieu Rigal IMB
    [Séminaire CSM] Boundary conditions for the Boussinesq-Abbott model with varying bottom
    In the littoral area, mechanisms behind the formation of extreme waves remain poorly understood despite their great socio-economic impact. In order to model these phenomena, it is especially important to take into account nonlinear and dispersive effects, which makes the Boussinesq-Abbott model a pertinent choice. However the presence of high order derivatives impedes the good handling of boundary conditions, which is crucial if one wishes to generate and evacuate waves from the computational domain. In order to raise this difficulty, an equivalent reformulation of this model has recently been proposed in the literature for the case of a flat bottom. This rewriting consists to get rid of the dispersive operator in exchange of a nonlocal flux and a dispersive boundary layer, and allows to efficiently prescribe the elevation of the free surface at the borders of the domain.
    The goal of this work is to extend this approach to the case of a varying bottom, while allowing to enforce more general boundary conditions. Once the nonlocal formulation of the model is established, numerical schemes of order 1 and 2 are proposed and validated through numerical experiments. The impact of different boundary conditions on the solutions is also investigated.
  • Le 21 mars 2024 à 15:30
  • Le Colloquium
    Salle de Conférences
    -- --
    TBA

  • Le 22 mars 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Suzanne Schlich (Grenoble)
    A préciser

  • Le 22 mars 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Cédric Pilatte (Oxford University)
    TBA
    ...
  • Le 25 mars 2024 à 14:00
  • Groupe de Travail Analyse
    Salle de conférences
    Michel Bonnefont IMB
    TBA

  • Le 26 mars 2024 à 11:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Bastien Pacifico LIRMM
    TBA

  • Le 26 mars 2024 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salles de conférence
    Samuel Tréton (U. Rouen) TBA
    TBA
    TBA
  • Le 28 mars 2024 à 14:00
  • Séminaire d'Analyse
    Salle 285
    Eduardo Garibaldi Unicamp (Brazil)
    Tba
    Tba
  • Le 29 mars 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Xavier Roulleau (Angers)
    Courbes modulaires $X_1(n)$ et surfaces elliptiques modulaires, théorie des matroïdes et applications
    Les matroïdes sont des objets de nature combinatoire, qui peuvent par exemple encoder les incidences d'arrangements de droites ou de points du plan.
    Les courbes elliptiques modulaires $X_1(n)$ paramètrent à isomorphisme près les paires (E,t) où E est une courbe elliptique et t un point de torsion d'ordre $n$. La surfaces elliptique modulaire au dessus de $X_1(n)$ est une surface munie d'une fibration dans $X_1(n)$ dont la fibre au-dessus du point (E,t) est (isomorphe à) la courbe E.
    Les courbes $X_1(n)$ sont biens connues, elles s'obtiennent par uniformisation complexe : $X_1(n)$ est quotient du demi plan par l'action d'un groupe de congruence, $\Gamma_1(n)$. Les surfaces elliptiques modulaires ont été construites par Shioda, également par uniformisation complexe.
    Dans cet exposé j'expliquerai comment il est aussi possible d'obtenir à l'aide de la théorie des matroïdes un modèle entier des courbes $X_1(n)$ et des surfaces elliptiques modulaires.
    Pour $n$ petit, cette construction permet d'obtenir les relations polynomiales explicites entre formes modulaires de poids 1 sur le groupe $\Gamma_1(n)$.
    Travaux en partie en collaboration avec Lukas Kühne et avec Lev Borisov.
  • Le 2 avril 2024 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Bordeaux
    San Vu-Ngoc IRMAR
    BBT in Bordeaux
    TBA
  • Le 4 avril 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Lorenzo Audibert (EDF)
    [Séminaire CSM]

  • Le 4 avril 2024 à 14:00
  • Séminaire d'Analyse
    Salle de conférences
    José Angel Pelaez\, Malaga
    Composition of analytic paraproducts and the radicality property for spaces of symbols of bounded integral operators
    Cf pdf.
  • Le 5 avril 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Alix Deruelle (Orsay)
    A préciser

  • Le 5 avril 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Liana Heuberger (University of Bath)
    TBA
    ...
  • Le 8 avril 2024 à 08:00 au 10 avril 2024 à 18:00
  • Séminaire d'Analyse
    Bordeaux
    Conférence "Harmonic analysis, Operator and function theory, and their applications"

  • Le 8 avril 2024 à 13:30 au 30 avril 2024 à 16:00
  • Manifestations Scientifiques
    Salle de conférences
    Organisateurs : B. Haak- A. Hartmann - K. Kellay - S. Kupin - E. Strouse
    Harmonic analysis, Operator and function theory, and their applications - Conference in memoriam of Jean Esterle.

  • Le 11 avril 2024 à 11:00
  • Séminaire Images Optimisation et Probabilités
    salle de conférence
    François Chapon Université of Toulouse
    A préciser
    A préciser
  • Le 11 avril 2024 à 14:00
  • Séminaire d'Analyse
    Salle de conférences
    Alexandru Aleman Lund
    Tba

  • Le 12 avril 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Lilia Mehidi (Grenade Espagne)
    A préciser

  • Le 12 avril 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Julia Schneider (University of Zürich)
    TBA
    ...
  • Le 16 avril 2024 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de conférences
    TBA TBA
    TBA

  • Le 18 avril 2024 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de conférences
    Pierre-Loïc Méliot Paris-Saclay
    À préciser
    À préciser
  • Le 18 avril 2024 à 14:00
  • Séminaire d'Analyse
    Salle de conférences
    Y. Tang U. Paris Eiffel
    Tba

  • Le 18 avril 2024 à 15:30
  • Le Colloquium
    Salle de Conférences
    Virginie Ehrlacher (CERMICS\, École des Ponts ParisTech)
    TBA

  • Le 19 avril 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Florence Fauquant-Millet (Saint-Etienne)
    A préciser

  • Le 19 avril 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Xenia Dimitrakopoulou (University of Warwick)
    TBA
    ...
  • Le 23 avril 2024 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de conférences
    Pas de séminaire

  • Le 26 avril 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Vacances

  • Le 3 mai 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Vladimiro Benedetti (Nice)
    A préciser

  • Le 3 mai 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Aurore Boitrel (Paris-Saclay)
    TBA
    ...
  • Le 6 mai 2024 à 14:00
  • Groupe de Travail Analyse
    Salle de conférences
    Armand Koenig IMB
    TBA

  • Le 7 mai 2024 à 11:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Félix Huber Labri
    TBA

  • Le 10 mai 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Relâche (pont de l'Ascension)

  • Le 13 mai 2024 à 14:00
  • Groupe de Travail Analyse
    Salle 1
    Armand Koenig IMB
    TBA

  • Le 14 mai 2024 à 11:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Oana Padurariu Max-Planck-Institut für Mathematik Bonn
    Bielliptic Shimura curves $X_0^D(N)$ with nontrivial level
    In this talk, I explain how we work towards completely classifying all bielliptic Shimura curves X_0^D(N) with nontrivial level N, extending a result of Rotger that provided such a classification for level one. This allows us to determine the list of all pairs (D,N) for which X_0^D(N) has infinitely many degree 2 points, up to 3 explicit possible exceptions. This is joint work with Frederick Saia.
  • Le 14 mai 2024 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de conférences
    David Krejcirik Czech Technical University in Prague\,
    Is the optimal rectangle a square?
    We give a light talk on optimality of shapes in geometry and physics. First, we recollect classical geometric results that the disk has the largest area (respectively, the smallest perimeter) among all domains of a given perimeter (respectively, area). Second, we recall that the circular drum has the lowest fundamental tone among all drums of a given area or perimeter and reinterpret the result in a quantum-mechanical language of nanostructures. In parallel, we discuss the analogous optimality of square among all rectangles in geometry and physics. As the main body of the talk, we present our recent attempts to prove the same spectral-geometric properties in relativistic quantum mechanics, where the mathematical model is a matrix-differential (Dirac) operator with complex (infinite-mass) boundary conditions. It is frustrating that such an illusively simple and expected result remains unproved and apparently out of the reach of current mathematical tools.
  • Le 16 mai 2024 à 14:00
  • Séminaire d'Analyse
    Salle de conférences
    Maxime Ferreira Da Costa L2S Supélec
    Tba

  • Le 16 mai 2024 à 15:30
  • Le Colloquium
    Salle de Conférences
    Antoine Chambert-Loir (Université Paris Cité)
    TBA

  • Le 17 mai 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Hussein Mourtada (Paris Jussieu)
    A préciser

  • Le 17 mai 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Dino Lorenzini (tbc) (UGA)
    TBA
    ...
  • Le 21 mai 2024 à 11:00
  • Séminaire de Physique Mathématique - EDP
    TBA
    Thomas Ourmières-Bonafos Aix-Marseille Université
    TBA
    TBA
  • Le 24 mai 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Sébastien Boucksom (IMJ-PRG CNRS)
    A préciser

  • Le 24 mai 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Maria Montanucci (Technical University Copenaghen)
    TBA
    ...
  • Le 27 mai 2024 à 14:00
  • Groupe de Travail Analyse
    Salle de conférences
    Stanislas Kupin IMB
    TBA

  • Le 28 mai 2024 à 11:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Jérémie Berthomieu Sorbonne Université
    TBA

  • Le 28 mai 2024 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de conférences
    TBA TBA
    TBA
    TBA
  • Le 31 mai 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Christian Urech (Zürich - ETH)
    A préciser

  • Le 31 mai 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Salim Rostam Université de Tours
    TBA
    TBA
  • Le 3 juin 2024 à 14:00
  • Groupe de Travail Analyse
    Salle de conférences
    Stanislas Kupin IMB
    TBA

  • Le 4 juin 2024 à 11:01
  • Séminaire de Physique Mathématique - EDP
    Toulouse
    TBA TBA
    BBT in Toulouse
    TBA
  • Le 7 juin 2024 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Pablo Montealegre (Montpellier)
    A préciser

  • Le 10 juin 2024 au 14 juin 2024
  • Manifestations Scientifiques
    Salle de conférences
    Contacts : Luis Fredes - Adrien Richou
    Journées de Probabilités 2024

  • Le 10 juin 2024 à 14:00
  • Groupe de Travail Analyse
    Salle de conférences
    Bernhard Haak IMB
    TBA

  • Le 11 juin 2024 à 11:00
  • Séminaire de Physique Mathématique - EDP
    TBA
    TBA TBA
    TBA
    TBA
  • Le 11 juin 2024 à 11:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Valentijn Karemaker Utrecht University\, The Netherlands
    TBA

  • Le 13 juin 2024 à 15:30
  • Le Colloquium
    Salle 1
    -- --
    TBA

  • Le 14 juin 2024 à 09:30
  • Séminaire de Géométrie
    Salle 2
    Anja Randecker (Heidelberg)
    A préciser

  • Le 14 juin 2024 à 11:00
  • Séminaire de Géométrie
    Salle 2
    Vincent Bagayoko (Paris IMJ)
    A préciser

  • Le 17 juin 2024 à 14:00
  • Groupe de Travail Analyse
    Salle de conférences
    Bernhard Haak IMB
    TBA

  • Le 17 juin 2024 à 14:00 au 21 juin 2024 à 14:00
  • Manifestations Scientifiques
    Bilbao
    Comité d’organisation : Jean-Bernard Bru - Laurent Michel
    Kinetic equation, Mathematical Physics and Probability

  • Le 18 juin 2024 à 11:00
  • Séminaire de Physique Mathématique - EDP
    TBA
    TBA TBA
    TBA
    TBA
  • Le 25 juin 2024 à 11:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Maria Corte-Real Santos University College London
    TBA

  • Le 25 juin 2024 à 11:01
  • Séminaire de Physique Mathématique - EDP
    TBA
    Chérif Amrouche U. Pau
    TBA
    TBA
  • Le 24 octobre 2024 à 15:30
  • Le Colloquium
    Salle de Conférénces
    Jose A. Carrillo (Oxford)
    TBA
    TBA