ACTUALITÉS
L’édition 2025 de la semaine MIMM, "Moi Informaticienne, Moi Mathématicienne", aura lieu du 22 au 25 Avril 2025 sur le campus de Talence.
Le GIS FRANCE GRILLES, SLICES-FR/Grid’5000, le Groupe Calcul, le GDR RSD, GENCI et les mésocentres de MesoNET organisent ensemble les JCAD 2024, Journées Calcul Données : Rencontres scientifiques et techniques autour du calcul et des données. Cette année, les JCAD sont organisées par le Mésocentre de Calcul Intensif Aquitain (MCIA) et l’IMB, avec le soutien de l’université de Bordeaux, du 04 au 06 novembre 2024 sur le Domaine du Haut-Carré.
Interview de Magalie Bénéfice qui vient d’obtenir un post-doctorat long en Mathématiques au sein de l’Institut Elie-Cartan de Lorraine (IECL) à Nancy.
Les inscriptions pour les demandes de stages de seconde seront ouvertes à partir du 2 janvier 2025.
Le programme Partenariats Hubert Curien vient d’attribuer un financement à Jasmin Raissy, afin de développer les échanges scientifiques internationaux avec l’università degli studi di Parma.
Le "Plan de conservation partagée des périodiques imprimés de Mathématiques" (PCMath) est lauréat du Cristal collectif 2024. A travers la qualité de son fond documentaire et l’implication de deux membres de l’IMB dans le Comité de pilotage du Plan, la BMI et l’IMB occupent une place prépondérante au sein du réseau national des bibliothèques de mathématiques et du PCMath.
Félicitations à Marius Tucsnak qui vient d’être nommé membre Senior de l’Institut Universitaire de France.
Le prix ECCOMAS Jacques-Louis Lions pour jeune chercheur a été décerné à Walter Boscheri. Ce prix est décerné à de jeunes chercheurs ayant apporté une contribution exceptionnelle dans le domaine des mathématiques.
L'IMB en bref
Institut de Mathématiques de Bordeaux UMR 5251
Directeur : Vincent Koziarz
L’Institut de Mathématiques de Bordeaux (IMB) est une unité mixte de recherche (UMR 5251) CNRS - Université de Bordeaux - Bordeaux INP.
Laboratoire d’accueil de l’Ecole Doctorale de Mathématiques et Informatique, l’IMB regroupe l’essentiel de la recherche en mathématiques du site bordelais.
La recherche à l’IMB est structurée autour de sept équipes :
– Analyse (responsable : M. Tucsnak)
– Calcul scientifique et Modélisation (responsable : R. Loubère)
– EDP et Physique mathématique (responsable : L. Michel)
– Géométrie (responsable : L. Bessières)
– Image Optimisation et Probabilités (responsable : J. Bigot)
– Optimisation Mathématique Modèle Aléatoire et Statistique (responsable : B. Detienne)
– Théorie des Nombres (responsable : D.Tossici)
L’IMB collabore avec le centre Inria de l’université de Bordeaux au sein des équipes-projets ASTRAL, CANARI, CARDAMOM, CARMEN, EDGE, MEMPHIS, MONC.
L’IMB participe à un Laboratoire Transfrontalier Commun avec le Basque Center for Applied Mathematics, l’Université du Pays Basque et Tecnalia. L’IMB est aussi partenaire du CEA Cesta via le LRC Anabase, de l’ONERA via la chaire PROVE, et de Naval Group via l’EPC Astral. Il participe actuellement à 35 projets ANR et 6 projets européens, compte 3 membres IUF (dont 1 sénior) et 1 ERC Starting Grant.
Les membres de l’IMB sont localisés sur trois sites :
– Sur le campus de Talence, l’IMB occupe une partie du bâtiment A33 qu’il partage entre autres avec l’UF Mathématiques et Interactions et la Bibliothèque de Mathématiques et Informatique.
– Sur le campus de Talence, dans le centre Inria de l’Université de Bordeaux
– Sur le site de l’hôpital Xavier Arnozan à Pessac au sein de l’IHU Liryc
Pour leurs enseignements, les membres de l’IMB sont affectés aux structures associées :
– UF Mathématiques et Interactions
– ENSEIRB-MATMECA
– IUT Bordeaux
– INSPÉ de l’académie de Bordeaux
– ENSC
AGENDA
On s'intéresse au problème d'optimiser une fonction objectif g(W x) + c^T x pour x entier, où chaque coordonnée de x est contrainte dans un intervalle. On suppose que la matrice W est à coefficient entiers de valeur absolue bornée par Delta, et qu'elle projette x sur un espace de petite dimension m << n. Ce problème est une généralisation du résultat de Hunkenschröder et al. dans lequel g est séparable convexe, et x est dans un 0-1 hypercube.
On présentera un algorithme en complexité n^m (m Delta)^O(m^2), sous la supposition que l'on sache résoudre efficacement le problème lorsque n = m. Cet algorithme utilise les travaux d'Eisenbrand et Weismantel sur la programmation linéaire entière avec peu de contraintes.
L'algorithme présenté peut être employé théoriquement dans plusieurs problèmes notamment la programmation mixte linéaire avec peu de contraintes, ou encore le problème du sac à dos où l'on doit acheter son sac.
Stochastic optimization naturally appear in many application areas, including machine learning. Our goal is to go further in the analysis of the Stochastic Average Gradient Accelerated (SAGA) algorithm. To achieve this, we introduce a new $\lambda$-SAGA algorithm which interpolates between the Stochastic Gradient Descent ($\lambda=0$) and the SAGA algorithm ($\lambda=1$). Firstly, we investigate the almost sure convergence of this new algorithm with decreasing step which allows us to avoid the restrictive strong convexity and Lipschitz gradient hypotheses associated to the objective function. Secondly, we establish a central limit theorem for the $\lambda$-SAGA algorithm. Finally, we provide the non-asymptotic $L^p$ rates of convergence.
In this talk, we consider a bounded domain in the Euclidean plane and examine the Laplacian eigenvalue problem supplemented with specific boundary conditions. A famous conjecture by Berry proposes that in chaotic systems, eigenfunctions resemble random monochromatic waves; however, this behavior is generally not expected in integrable systems. In this talk, we explore the behavior of high-energy eigenfunctions and their connection to Berry’s random wave model. We do so by studying a related property called Inverse Localization, which describes how eigenfunctions can approximate monochromatic waves in small regions of the domain.
Une notion simple de complexité topologique d'une variété lisse est donnée par la nombre minimal de simplexes dans une triangulation. Pour une variété riemannienne fermée à courbures sectionnelles normalisées il est naturel de comparer cet invariant au volume riemannien. Gelander a conjecturé au début du siècle que pour les variétés localement symétriques irréductbles de dimension $d \ge 4$ le rapport de ces deux quantités devrait être borné dans les deux sens (par une constante ne dépendant que de d). Je présenterai un travail en commun avec Mikolaj Fraczyk et Sebastian Hurtado où nous démontrons cette conjecture dans le cas des variétés arithmétiques.
L'objet de cet exposé est d'établir un lien entre les formes automorphes en caractéristique positive et le champ des G-zips introduit par Pink-Wedhorn-Ziegler. Dans le cas des variétés modulaires de Siegel, j'expliquerai comment les poids des formes automorphes sont entièrement contrôlés par ce champ.
L'équipe Lambda vous donne rendez-vous le samedi 23 novembre 2024 à partir de 14h pour une journée d'intégration ! L'évènement est ouvert à l'ensemble des doctorant.e.s et post-doctorant.e.s du laboratoire, anciens comme nouveaux. L'occasion de se rencontrer autour de diverses activités sportives ou ludiques.
Le planning de la journée sera :
14h-14h30 : Arrivée
14h30 - 15h : Présentation de l'asso, des membres et présentation des participants
15h - 16h : Balle au prisonnier
16h-16h30 : Goûter
16h30 - 17h30 : Mini-jeux (puzzle, blindtest, quizz)
17h30 - 18h : Remise des prix
18h : Bar
Pour participer, il suffit de s'inscrire sur ce sondage. Le point de rendez-vous est le COSEC Rocquencourt (8 Av. Jean Babin, 33600 Pessac).
Au plaisir de vous voir,
L'équipe Lambda
The Lambda team invites you on Saturday, November 23rd, 2024 from 2:00 pm for an integration day! This event is open to all PhD students and postdocs in the lab, both old and new members. It's a great opportunity to meet around various sports and fun activities.
14h-14h30 : Arrival
14h30 - 15h : Presentation of the association, its members and participants
15h - 16h : Dodgeball
16h-16h30 : Snack
16h30 - 17h30 : Mini games (puzzle, blindtest, quiz)
17h30 - 18h : Prize-giving ceremony
18h : Bar
To participate, simply sign up through this survey. The meeting point is COSEC Rocquencourt (8 Av. Jean Babin, 33600 Pessac).
We look forward to seeing you there,
The Lambda Team